如何在 TF 2.2 中创建自定义 PreprocessingLayer

How to create a custom PreprocessingLayer in TF 2.2

我想使用 tf.keras.layers.experimental.preprocessing.PreprocessingLayer 层创建自定义预处理层。

在这个自定义层中,放置在输入层之后,我想使用 tf.cast(img, tf.float32) / 255.

规范化我的图像

我试图找到一些代码或示例来展示如何创建这个预处理层,但找不到。

有人可以提供创建和使用 PreprocessingLayer 层的完整示例吗?

我认为最好和更简洁的解决方案是使用一个简单的 Lambda 层,您可以在其中包装预处理函数

这是一个虚拟的工作示例

import numpy as np
from tensorflow.keras.layers import *
from tensorflow.keras.models import *


X = np.random.randint(0,256, (200,32,32,3))
y = np.random.randint(0,3, 200)

inp = Input((32,32,3))
x = Lambda(lambda x: x/255)(inp)
x = Conv2D(8, 3, activation='relu')(x)
x = Flatten()(x)
out = Dense(3, activation='softmax')(x)

m = Model(inp, out)
m.compile(loss='sparse_categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
history = m.fit(X, y, epochs=10)

如果你想有一个自定义的预处理层,其实你不需要使用PreprocessingLayer。您可以简单地继承 Layer

取最简单的预处理层Rescaling as an example, it is under the tf.keras.layers.experimental.preprocessing.Rescaling namespace. However, if you check the actual implementation, it is just subclass Layer class Source Code Link Here但有@keras_export('keras.layers.experimental.preprocessing.Rescaling')

@keras_export('keras.layers.experimental.preprocessing.Rescaling')
class Rescaling(Layer):
  """Multiply inputs by `scale` and adds `offset`.
  For instance:
  1. To rescale an input in the `[0, 255]` range
  to be in the `[0, 1]` range, you would pass `scale=1./255`.
  2. To rescale an input in the `[0, 255]` range to be in the `[-1, 1]` range,
  you would pass `scale=1./127.5, offset=-1`.
  The rescaling is applied both during training and inference.
  Input shape:
    Arbitrary.
  Output shape:
    Same as input.
  Arguments:
    scale: Float, the scale to apply to the inputs.
    offset: Float, the offset to apply to the inputs.
    name: A string, the name of the layer.
  """

  def __init__(self, scale, offset=0., name=None, **kwargs):
    self.scale = scale
    self.offset = offset
    super(Rescaling, self).__init__(name=name, **kwargs)

  def call(self, inputs):
    dtype = self._compute_dtype
    scale = math_ops.cast(self.scale, dtype)
    offset = math_ops.cast(self.offset, dtype)
    return math_ops.cast(inputs, dtype) * scale + offset

  def compute_output_shape(self, input_shape):
    return input_shape

  def get_config(self):
    config = {
        'scale': self.scale,
        'offset': self.offset,
    }
    base_config = super(Rescaling, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

所以证明Rescaling预处理只是另一个普通层。

主要部分是def call(self, inputs)函数。您可以创建任何复杂的逻辑来预处理您的 inputs 然后 return.

可以找到有关自定义层的更简单的文档here

简而言之,您可以按层进行预处理,可以通过 Lambda 进行简单操作,也可以通过子类化 Layer 来实现您的目标。