使用 geom_boxplot 指定分位数和长数据的有效方法
Efficient way to use geom_boxplot with specified quantiles and long data
我有一个数据集,其中包含每个部门和国家/地区的计算分位数。它看起来像这样:
df <- structure(list(quantile = c("p5", "p25", "p50", "p75", "p95",
"p5", "p25", "p50", "p75", "p95", "p5", "p25", "p50", "p75",
"p95", "p5", "p25", "p50", "p75", "p95"), value = c(6, 12, 20,
33, 61, 6, 14, 23, 38, 63, 7, 12, 17, 26, 50, 7, 12, 18, 26,
51), country = c("A", "A", "A", "A", "A", "B", "B", "B", "B",
"B", "A", "A", "A", "A", "A", "B", "B", "B", "B", "B"), dep = c("D",
"D", "D", "D", "D", "D", "D", "D", "D", "D", "I", "I", "I", "I",
"I", "I", "I", "I", "I", "I"), kpi = c("F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F")), row.names = c(NA, -20L), class = c("tbl_df", "tbl",
"data.frame"))
现在,我想为每个比较国家的部门构建一个箱线图,并使用 p5/p95 而不是 min/max 类似于此图但没有异常值(因此, Train_number
将是countries
):
该图对应的代码是(来自问题ggplot2, geom_boxplot with custom quantiles and outliers):
ggplot(MyData, aes(factor(Stations), Arrival_Lateness,
fill = factor(Train_number))) +
stat_summary(fun.data = f, geom="boxplot",
position=position_dodge(1))+
stat_summary(aes(color=factor(Train_number)),fun.y = q, geom="point",
position=position_dodge(1))
我试图从上面的代码和提供的答案中得出一个解决方案。不幸的是,我不知道如何从变量 quantile
和 value
到 ggplot()
提供必要的值。 stat_summary()
函数中是否有我错过但可以使用的参数?或者只是另一个简单的解决方案?
无论您提供什么数据,您都可以生成以下图表
library(ggplot2)
f <- function(x) {
r <- quantile(x, probs = c(0.05, 0.25, 0.5, 0.75, 0.95))
names(r) <- c("ymin", "lower", "middle", "upper", "ymax")
r
}
ggplot(df, aes(factor(dep), value)) +
stat_summary(fun.data = f, geom="boxplot",
position=position_dodge(1))+
facet_grid(.~country, scales="free")
不知道对不对
我有一个数据集,其中包含每个部门和国家/地区的计算分位数。它看起来像这样:
df <- structure(list(quantile = c("p5", "p25", "p50", "p75", "p95",
"p5", "p25", "p50", "p75", "p95", "p5", "p25", "p50", "p75",
"p95", "p5", "p25", "p50", "p75", "p95"), value = c(6, 12, 20,
33, 61, 6, 14, 23, 38, 63, 7, 12, 17, 26, 50, 7, 12, 18, 26,
51), country = c("A", "A", "A", "A", "A", "B", "B", "B", "B",
"B", "A", "A", "A", "A", "A", "B", "B", "B", "B", "B"), dep = c("D",
"D", "D", "D", "D", "D", "D", "D", "D", "D", "I", "I", "I", "I",
"I", "I", "I", "I", "I", "I"), kpi = c("F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F")), row.names = c(NA, -20L), class = c("tbl_df", "tbl",
"data.frame"))
现在,我想为每个比较国家的部门构建一个箱线图,并使用 p5/p95 而不是 min/max 类似于此图但没有异常值(因此, Train_number
将是countries
):
该图对应的代码是(来自问题ggplot2, geom_boxplot with custom quantiles and outliers):
ggplot(MyData, aes(factor(Stations), Arrival_Lateness,
fill = factor(Train_number))) +
stat_summary(fun.data = f, geom="boxplot",
position=position_dodge(1))+
stat_summary(aes(color=factor(Train_number)),fun.y = q, geom="point",
position=position_dodge(1))
我试图从上面的代码和提供的答案中得出一个解决方案。不幸的是,我不知道如何从变量 quantile
和 value
到 ggplot()
提供必要的值。 stat_summary()
函数中是否有我错过但可以使用的参数?或者只是另一个简单的解决方案?
无论您提供什么数据,您都可以生成以下图表
library(ggplot2)
f <- function(x) {
r <- quantile(x, probs = c(0.05, 0.25, 0.5, 0.75, 0.95))
names(r) <- c("ymin", "lower", "middle", "upper", "ymax")
r
}
ggplot(df, aes(factor(dep), value)) +
stat_summary(fun.data = f, geom="boxplot",
position=position_dodge(1))+
facet_grid(.~country, scales="free")
不知道对不对