自变量范围内的最大值和最小值

Maximum and minimum in a range of independent variable

根据@Peaceful James 的回答,我试图减少混淆。因此,编辑问题。

已编辑

我试图在自变量范围内找到最大值(和最小值),即 X。我的代码如下所示。注意,这只是一个代表性的功能。

import numpy as np
import matplotlib.pyplot as plt
from pandas import *

X = np.arange(2, 11, 0.2)

Z = np.zeros((len(X),1))

for i in range(0,len(X)):
    Z[i] = 0.1*np.sin(X[i]-5)

print(DataFrame(Z))
A = np.argmax(Z, axis = 0)
B = np.argmin(Z, axis = 0)

C = print("Maximum =",Z[A[0]])
D = print("Minimum =", Z[B[0]])

plt.plot(X,Z,'r-', linewidth = 2)
plt.xlabel('$X$ (-)')
plt.ylabel('$Z$ (-)')

1: A = np.argmax(Z, axis = 0) 最大值是 0.09​​995736 (index: (23,0)) 介于 X6 and 8

2:A = np.argmin(Z, axis = 0) 最小值为 -0.09995736(索引:(7,0)),介于 X2 and 4。但是,X8 and 10 之间还有另一个最小值。我想知道是否有办法将 X 的某种上下限值传递给 np.argmin (或类似的命令)以获得 second 函数 Z.

的最小值

感谢任何帮助。谢谢!

使用numpy.argsorthttps://numpy.org/devdocs/reference/generated/numpy.argsort.html

import numpy as np

X = np.arange(2, 11, 0.2)

Z = np.zeros((len(X),1))

for i in range(0,len(X)):
    Z[i] = 0.1*np.sin(X[i]-5)

C = np.argsort(Z, axis=0)
C = C.flatten()  # flatten because it is currently an array of 1-dim arrays.

print("Maximum =",Z[C[-1]])
print("Second Maximum =",Z[C[-2]])

print("Second Minimum =",Z[C[1]])
print("Minimum =",Z[C[0]])