keras和scikit-learn在精度计算上的区别

difference in the calculation of accuracy between keras and scikit-learn

我目前正在使用 keras 中的 CNN 进行多标签图像分类。 除了keras的准确率,我们也用各种评估方法(recall、precision、F1 score和accuracy)再次确认了scikit-learn的准确率。

我们发现keras计算的准确率显示在90%左右,而scikit-learn显示准确率只有60%左右。

我不知道为什么会这样,所以请告诉我。

是不是keras计算有问题?

我们使用 sigmoid 作为激活函数,binary_crossentropy 作为损失函数,adam 作为优化器。


Keras 训练

input_tensor = Input(shape=(img_width, img_height, 3))

base_model = MobileNetV2(include_top=False, weights='imagenet')

#model.summary()

x = base_model.output
x = GlobalAveragePooling2D()(x)
#x = Dense(2048, activation='relu')(x)
#x = Dropout(0.5)(x)
x = Dense(1024, activation = 'relu')(x)

x = Dropout(0.5)(x)
predictions = Dense(6, activation = 'sigmoid')(x)

for layer in base_model.layers:
    layer.trainable = False


model = Model(inputs = base_model.input, outputs = predictions)
print("{}層".format(len(model.layers)))


model.compile(optimizer=sgd, loss="binary_crossentropy", metrics=["acc"])

history = model.fit(X_train, y_train, epochs=50, validation_data=(X_val, y_val), batch_size=64, verbose=2)

model_evaluate()

Keras 显示 90%(准确率)。


scikit-learn 检查

 from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
thresholds=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

y_pred = model.predict(X_test)

for val in thresholds:
    print("For threshold: ", val)
    pred=y_pred.copy()
  
    pred[pred>=val]=1
    pred[pred<val]=0
    
    accuracy = accuracy_score(y_test, pred)
    precision = precision_score(y_test, pred, average='micro')
    recall = recall_score(y_test, pred, average='micro')
    f1 = f1_score(y_test, pred, average='micro')
   
    print("Micro-average quality numbers")
    print("Acc: {:.4f}, Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(accuracy, precision, recall, f1))

输出(scikit-learn)

  For threshold:  0.1
Micro-average quality numbers
Acc: 0.0727, Precision: 0.3776, Recall: 0.8727, F1-measure: 0.5271
For threshold:  0.2
Micro-average quality numbers
Acc: 0.1931, Precision: 0.4550, Recall: 0.8033, F1-measure: 0.5810
For threshold:  0.3
Micro-average quality numbers
Acc: 0.3323, Precision: 0.5227, Recall: 0.7403, F1-measure: 0.6128
For threshold:  0.4
Micro-average quality numbers
Acc: 0.4574, Precision: 0.5842, Recall: 0.6702, F1-measure: 0.6243
For threshold:  0.5
Micro-average quality numbers
Acc: 0.5059, Precision: 0.6359, Recall: 0.5858, F1-measure: 0.6098
For threshold:  0.6
Micro-average quality numbers
Acc: 0.4597, Precision: 0.6993, Recall: 0.4707, F1-measure: 0.5626
For threshold:  0.7
Micro-average quality numbers
Acc: 0.3417, Precision: 0.7520, Recall: 0.3383, F1-measure: 0.4667
For threshold:  0.8
Micro-average quality numbers
Acc: 0.2205, Precision: 0.7863, Recall: 0.2132, F1-measure: 0.3354
For threshold:  0.9
Micro-average quality numbers
Acc: 0.1063, Precision: 0.8987, Recall: 0.1016, F1-measure: 0.1825

在多标签分类的情况下,可能有两种正确答案。

  1. 如果预测的所有子标签都是正确的。示例:在演示数据集 y_true 中,有 5 个输出。在y_pred中,其中3个是完全正确的。 在这种情况下,准确度应该是 60%.

  2. 如果我们也考虑多标签分类的子标签,那么准确率会发生变化。示例:演示数据集 y_true 总共包含 15 个预测。 y_pred 正确预测了其中的 10 个。在这种情况下,准确度应该是 66.7%.

SkLearn 处理第 1 点中所述的多标签分类。然而, Keras 精度指标遵循第 2 点中所述的方法。下面给出了代码示例。

代码:

import tensorflow as tf
from sklearn.metrics import accuracy_score
import numpy as np

# A demo dataset 
y_true = np.array([[0, 1, 0], [1, 0, 0], [1, 1, 1], [0, 0, 0], [1, 0, 1]])
y_pred = np.array([[1, 0, 0], [1, 0, 0], [0, 0, 0], [0, 0, 0], [1, 0, 1]])

kacc = tf.keras.metrics.Accuracy()
_ = kacc.update_state(y_true, y_pred)
print(f'Keras Accuracy acc: {kacc.result().numpy()*100:.3}')

kbacc = tf.keras.metrics.BinaryAccuracy()
_ = kbacc.update_state(y_true, y_pred)
print(f'Keras BinaryAccuracy acc: {kbacc.result().numpy()*100:.3}')

print(f'SkLearn acc: {accuracy_score(y_true, y_pred)*100:.3}')

输出:

Keras Accuracy acc: 66.7
Keras BinaryAccuracy acc: 66.7
SkLearn acc: 60.0

因此,您必须选择其中的任何一个选项。如果您选择使用方法 1,则必须手动实施准确度指标。但是,多标签训练通常使用 sigmoidbinary_crossentropy 损失来完成。 binary_crossentropy 最小化损失是基于方法2,所以,你也应该照做。