如何将字符串类型列的因子级别合并到 pydatatable 中的另一个?

How to lump together factor levels of a string type column into another in pydatatable?

我有一个数据表,

DT_X = dt.Frame({'variety': ['Caturra',
  'Bourbon',
  'Typica',
  'Catuai',
  'Hawaiian Kona',
  'Yellow Bourbon',
  'Mundo Novo',
  'Catimor',
  'SL14',
  'SL28',
  'Pacas',
  'Gesha',
  'Pacamara',
  'SL34',
  'Arusha',
  'Peaberry',
  'Mandheling',
  'Sumatra',
  'Blue Mountain',
  'Ethiopian Yirgacheffe',
  'Java',
  'Ruiru 11',
  'Ethiopian Heirlooms',
  'Marigojipe',
  'Moka Peaberry',
  'Pache Comun',
  'Sulawesi',
  'Sumatra Lintong'],
 'count': [256,
  226,
  211,
  74,
  44,
  35,
  33,
  20,
  17,
  15,
  13,
  12,
  8,
  8,
  6,
  5,
  3,
  3,
  2,
  2,
  2,
  2,
  1,
  1,
  1,
  1,
  1,
  1]})

可以看作,

Out[8]: 
   | variety                count
-- + ---------------------  -----
 0 | Caturra                  256
 1 | Bourbon                  226
 2 | Typica                   211
 3 | Catuai                    74
 4 | Hawaiian Kona             44
 5 | Yellow Bourbon            35
 6 | Mundo Novo                33
 7 | Catimor                   20
 8 | SL14                      17
 9 | SL28                      15
10 | Pacas                     13
11 | Gesha                     12
12 | Pacamara                   8
13 | SL34                       8
14 | Arusha                     6
15 | Peaberry                   5
16 | Mandheling                 3
17 | Sumatra                    3
18 | Blue Mountain              2
19 | Ethiopian Yirgacheffe      2
20 | Java                       2
21 | Ruiru 11                   2
22 | Ethiopian Heirlooms        1
23 | Marigojipe                 1
24 | Moka Peaberry              1
25 | Pache Comun                1
26 | Sulawesi                   1
27 | Sumatra Lintong            1

我现在想用前4个级别'Caturra'、'Bourbon'、'Typica'、'Catuai'填写品种栏,其余级别应处理和其他人一样。

预期输出为:

Out[9]: 
   | variety  count
-- + -------  -----
 0 | Caturra    256
 1 | Bourbon    226
 2 | Typica     211
 3 | Catuai      74
 4 | Others     236

[5 rows x 2 columns]

案例二:

我有一个数据表,

DT_X_1 = dt.Frame({'variety': ['Bourbon',
  'Catimor',
  'Ethiopian Yirgacheffe',
  'Caturra',
  'Bourbon',
  'SL14',
  'Caturra',
  'Sumatra',
  'Bourbon',
  'Caturra',
  'SL34',
  'Hawaiian Kona',
  'Caturra',
  'Yellow Bourbon',
  'Yellow Bourbon',
  'Bourbon',
  'SL28',
  'Bourbon',
  'Caturra',
  'SL28',
  'Bourbon',
  'SL14',
  'Caturra',
  'Gesha',
  'Bourbon',
  'Catuai',
  'Caturra',
  'Bourbon',
  'Bourbon',
  'Hawaiian Kona']})

可以看作

Out[7]: 
   | variety              
-- + ---------------------
 0 | Bourbon              
 1 | Catimor              
 2 | Ethiopian Yirgacheffe
 3 | Caturra              
 4 | Bourbon              
 5 | SL14                 
 6 | Caturra              
 7 | Sumatra              
 8 | Bourbon              
 9 | Caturra              
10 | SL34                 
11 | Hawaiian Kona        
12 | Caturra              
13 | Yellow Bourbon       
14 | Yellow Bourbon       
15 | Bourbon              
16 | SL28                 
17 | Bourbon              
18 | Caturra              
19 | SL28                 
20 | Bourbon              
21 | SL14                 
22 | Caturra              
23 | Gesha                
24 | Bourbon              
25 | Catuai               
26 | Caturra              
27 | Bourbon              
28 | Bourbon              
29 | Hawaiian Kona        

[30 rows x 1 column]
  1. 列 variety 有大约 12 个不同的值,
Out[8]: 
   | variety                count
-- + ---------------------  -----
 0 | Bourbon                    9
 1 | Catimor                    1
 2 | Catuai                     1
 3 | Caturra                    7
 4 | Ethiopian Yirgacheffe      1
 5 | Gesha                      1
 6 | Hawaiian Kona              2
 7 | SL14                       2
 8 | SL28                       2
 9 | SL34                       1
10 | Sumatra                    1
11 | Yellow Bourbon             2

[12 rows x 2 columns]

在这里,我想将字段 variety 级别从 12 折叠到 2,这是最常见的级别。

预期的输出是,

Out[13]: 
   | variety
-- + -------
 0 | Bourbon
 1 | Others 
 2 | Others 
 3 | Caturra
 4 | Bourbon
 5 | Others 
 6 | Caturra
 7 | Others 
 8 | Bourbon
 9 | Caturra
10 | Others 
11 | Others 
12 | Caturra
13 | Others 
14 | Others 
15 | Bourbon
16 | Others 
17 | Bourbon
18 | Caturra
19 | Others 
20 | Bourbon
21 | Others 
22 | Caturra
23 | Others 
24 | Bourbon
25 | Others 
26 | Caturra
27 | Bourbon
28 | Bourbon
29 | Others 

[30 rows x 1 column]

一种方法是首先用字符串“Other”替换从第 4 个开始的所有 variety 值,然后按 variety:

分组
>>> DT_X[4:, f.variety] = "Other"
>>> DT_X = DT_X[:, sum(f.count), by(f.variety)]
   | variety  count
-- + -------  -----
 0 | Bourbon    226
 1 | Catuai      74
 2 | Caturra    256
 3 | Other      236
 4 | Typica     211

[5 rows x 2 columns]

另一种可能是把原来的table,按行分成两部分,折叠第二部分并重新绑定回原来的:

>>> dt.rbind(DT_X[:4, :], 
             dt.Frame(variety=["Other"], count=[DT_X[4:, f.count].sum1()]))
   | variety  count
-- + -------  -----
 0 | Caturra    256
 1 | Bourbon    226
 2 | Typica     211
 3 | Catuai      74
 4 | Other      236

[5 rows x 2 columns]

案例二

您已经按品种创建了 table 个计数,所以现在您只需按计数和 select 2 个最常见的品种进行排序:

>>> from datatable import by, sort, count, join, update, f, g
>>> counts = DT_X_1[:, count(), by(f.variety)]
>>> frequent = counts[-2:, :, sort(f.count)]
>>> frequent
   | variety  count
-- + -------  -----
 0 | Caturra      7
 1 | Bourbon      9

[2 rows x 2 columns]

(或者,您可以按计数值过滤)。

现在,下一步是将此 table 连接回原始值,以便我们获得哪些值“频繁”的指标。 join 操作可以和 update 结合起来,这样在同一个操作中我们将所有在 join 期间不匹配的字段设置为 "others":

>>> frequent.key = "variety"
>>> DT_X_1[g.variety==None, update(variety="others"), join(frequent)]
>>> DT_X_1
   | variety
-- + -------
 0 | Bourbon
 1 | others 
 2 | others 
 3 | Caturra
 4 | Bourbon
 5 | others 
 6 | Caturra
 7 | others 
 8 | Bourbon
 9 | Caturra
10 | others 
11 | others 
12 | Caturra
13 | others 
14 | others 
15 | Bourbon
16 | others 
17 | Bourbon
18 | Caturra
19 | others 
20 | Bourbon
21 | others 
22 | Caturra
23 | others 
24 | Bourbon
25 | others 
26 | Caturra
27 | Bourbon
28 | Bourbon
29 | others 

[30 rows x 1 column]