使用字符 RNN 生成莎士比亚文本

Generating Shakespearean Text Using a Character RNN

我正在读一本 ML 书 Hands on Machine Learning (第 2 版)第 526 页有一个主题 Generating Shakespearean Text Using a Character RNN 我正在做他们正在做的事情,但在训练时显示 TypeError。我尽力在我的水平上解决了这个问题。

TypeError: unsupported operand type(s) for *: 'int' and 'NoneType'

这是代码


    import tensorflow as tf
    from tensorflow import keras
    from nltk import tokenize
    import numpy as np
    
    shakespeare_url = "https://homl.info/shakespeare" # shortcut URL
    filepath = keras.utils.get_file("shakespeare.txt", shakespeare_url)
    with open(filepath) as f:
      shakespeare_text = f.read()
    
    tokenizer = keras.preprocessing.text.Tokenizer(char_level=True)
    tokenizer.fit_on_texts([shakespeare_text])
    
    max_id = len(tokenizer.word_index)
    dataset_size = tokenizer.document_count
    [encoded] = np.array(tokenizer.texts_to_sequences([shakespeare_text])) - 1
    print(dataset_size)
      
    train_size = dataset_size * 90 // 100
    dataset = tf.data.Dataset.from_tensor_slices(encoded[:train_size])
    print(train_size)
    
    n_steps = 100
    window_length = n_steps + 1 # target = input shifted 1 character ahead
    dataset = dataset.window(window_length, shift=1, drop_remainder=True)
    dataset = dataset.flat_map(lambda window: window.batch(window_length))
    
    batch_size = 32
    dataset = dataset.shuffle(10000).batch(batch_size)
    dataset = dataset.map(lambda windows: (windows[:, :-1], windows[:, 1:]))
    
    dataset = dataset.map(lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))
    
    dataset = dataset.prefetch(1)
    print(dataset)
    
    
    model = keras.models.Sequential([
      keras.layers.GRU(128, return_sequences=True, input_shape=[None, max_id],
      dropout=0.2, recurrent_dropout=0.2),
      keras.layers.GRU(128, return_sequences=True,
      dropout=0.2, recurrent_dropout=0.2),
      keras.layers.TimeDistributed(keras.layers.Dense(max_id,activation="softmax"))
      ])
    
    model.compile(loss="sparse_categorical_crossentropy", optimizer="adam")
    history = model.fit(dataset, epochs=20)

dataset_size = tokenizer.document_count returns 1 出于某种原因所以

dataset = tf.data.Dataset.from_tensor_slices(encoded[:train_size]) 失败

我用这个代替它,似乎工作正常:

train_size = encoded.shape[0]*90//100

此错误的原因在这一行:

tokenizer.fit_on_texts([shakespeare_text])

您将整个文本放在一个数组中,这就是为什么 dataset_size1

你应该改用这个:

tokenizer.fit_on_texts(shakespeare_text)