如何用 Python 中区域指定的颜色填充 openCV 轮廓?
How to fill openCV contours with a color specified by its area in Python?
我对生物细胞进行了分段和二元化 image,并使用 openCV 提取了轮廓的面积和周长。我正在尝试根据参数 q=perimeter/Sqrt(area) 对每个单元格使用颜色图进行标记和着色,但不知道从哪里开始。根据这个值,基本上每个单元格都会有一个独特的颜色。
如有任何帮助,我们将不胜感激!这是我目前所拥有的:
> #specify folders
filelocat = '/Users/kate/Desktop/SegmenterTest3/SegmentedCells/'
#process image
img = cv2.imread(str(filelocat) + 'Seg3.png')
image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(image, 60, 255, cv2.THRESH_BINARY)[1]
kernel = np.ones((20,20), np.uint8)
closing = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
#inverts image so that the objects are white (for analysis)
imagem = cv2.bitwise_not(closing)
#Find contours
cnts = cv2.findContours(imagem.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
#calculate moments and extract cell shape info
moment_dict = {}
for index, cnt in enumerate(cnts):
moment_dict[index] = cv2.moments(cnt)
obj_properties = {}
for index, (key, obj_moments) in enumerate(moment_dict.items()):
if obj_moments['m00'] > 1000 and obj_moments['m00'] < 20000:
area = obj_moments['m00']
cx = obj_moments['m10'] / obj_moments['m00']
cy = obj_moments['m01'] / obj_moments['m00']
peri = cv2.arcLength(cnts[index], True)
q = (peri/(math.sqrt(area)))
props = {}
props['q']=q
props['peri']=peri
props['area']=area
props['cx']=cx
props['cy']=cy
obj_properties[key] = props
感谢您的帮助!!
为了解决这个问题,你需要收集所有的q,这样你就可以根据观察到的q的范围来缩放它们。您可以像这样使用列表理解来做到这一点:
all_the_q = [v['q'] for k, v in obj_properties.items()]
您还需要选择一些颜色图。根据之前评论中的建议,我将其留作 reader 的练习。快速了解一下,您只需将 q 缩放为 8 位 RGB 即可看到初步结果。
查看下面的完整代码。请注意 moment_dict
中的 index
是 obj_properties
字典中的键,因此整个 enumerate
结构是不必要的。我冒昧地完全放弃了 enumerate
。无论如何,您的过滤循环都会选择正确的轮廓索引。根据您的标准 select 等高线后,收集所有 q 并计算它们 min/max/range。然后使用它们将单个 q 缩放到您需要的任何比例。在下面的示例中,我将其缩放为绿色分量的 8 位值。您可以根据需要按照红色和蓝色的图案。
请注意,在此图像中,大部分 q 都在 4.0 - 4.25 范围内,有一些异常值在 5.50(绘制直方图以查看该分布)。这会扭曲颜色图,因此大多数单元格将使用非常相似的颜色进行着色。但是,我希望这有助于您入门。我建议对 q 应用对数函数,以便在视觉上“展开”它们分布的下端。
- 编辑: 用 matplotlib 中的一个替换了原始颜色图。有关所有可能的颜色图选择,请参阅 。
import matplotlib.pyplot as plt
import math
import os
import cv2
import imutils
import numpy as np
# specify folders
filelocat = '/Users/kate/Desktop/SegmenterTest3/SegmentedCells/'
# process image
img = cv2.imread(os.path.join(filelocat, 'Seg3.png'))
image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(image, 60, 255, cv2.THRESH_BINARY)[1]
kernel = np.ones((20, 20), np.uint8)
closing = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# inverts image so that the objects are white (for analysis)
imagem = cv2.bitwise_not(closing)
# Find contours
cnts = cv2.findContours(imagem.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# calculate moments and extract cell shape info
moment_dict = {}
for index, cnt in enumerate(cnts):
moment_dict[index] = cv2.moments(cnt)
obj_properties = {}
for index, obj_moments in moment_dict.items():
if obj_moments['m00'] > 1000 and obj_moments['m00'] < 20000:
area = obj_moments['m00']
cx = obj_moments['m10'] / obj_moments['m00']
cy = obj_moments['m01'] / obj_moments['m00']
peri = cv2.arcLength(cnts[index], True)
q = (peri/(math.sqrt(area)))
props = {}
props['q'] = q
props['peri'] = peri
props['area'] = area
props['cx'] = cx
props['cy'] = cy
obj_properties[index] = props
all_the_q = [v['q'] for k, v in obj_properties.items()]
min_q = min(all_the_q)
max_q = max(all_the_q)
range_q = max_q - min_q
# colormapping of q scalars to BGR values
cmap = plt.cm.get_cmap('terrain')
for index, prop in obj_properties.items():
v = (prop['q'] - min_q) / range_q
r, g, b, a = [int(x) for x in cmap(v, bytes=True)]
cv2.drawContours(img, cnts, index, (b, g, r), -1)
cv2.imwrite('colored.png', img)
cv2.imshow('Biocells', img)
cv2.waitKey(10000)
我对生物细胞进行了分段和二元化 image,并使用 openCV 提取了轮廓的面积和周长。我正在尝试根据参数 q=perimeter/Sqrt(area) 对每个单元格使用颜色图进行标记和着色,但不知道从哪里开始。根据这个值,基本上每个单元格都会有一个独特的颜色。
如有任何帮助,我们将不胜感激!这是我目前所拥有的:
> #specify folders
filelocat = '/Users/kate/Desktop/SegmenterTest3/SegmentedCells/'
#process image
img = cv2.imread(str(filelocat) + 'Seg3.png')
image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(image, 60, 255, cv2.THRESH_BINARY)[1]
kernel = np.ones((20,20), np.uint8)
closing = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
#inverts image so that the objects are white (for analysis)
imagem = cv2.bitwise_not(closing)
#Find contours
cnts = cv2.findContours(imagem.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
#calculate moments and extract cell shape info
moment_dict = {}
for index, cnt in enumerate(cnts):
moment_dict[index] = cv2.moments(cnt)
obj_properties = {}
for index, (key, obj_moments) in enumerate(moment_dict.items()):
if obj_moments['m00'] > 1000 and obj_moments['m00'] < 20000:
area = obj_moments['m00']
cx = obj_moments['m10'] / obj_moments['m00']
cy = obj_moments['m01'] / obj_moments['m00']
peri = cv2.arcLength(cnts[index], True)
q = (peri/(math.sqrt(area)))
props = {}
props['q']=q
props['peri']=peri
props['area']=area
props['cx']=cx
props['cy']=cy
obj_properties[key] = props
感谢您的帮助!!
为了解决这个问题,你需要收集所有的q,这样你就可以根据观察到的q的范围来缩放它们。您可以像这样使用列表理解来做到这一点:
all_the_q = [v['q'] for k, v in obj_properties.items()]
您还需要选择一些颜色图。根据之前评论中的建议,我将其留作 reader 的练习。快速了解一下,您只需将 q 缩放为 8 位 RGB 即可看到初步结果。
查看下面的完整代码。请注意 moment_dict
中的 index
是 obj_properties
字典中的键,因此整个 enumerate
结构是不必要的。我冒昧地完全放弃了 enumerate
。无论如何,您的过滤循环都会选择正确的轮廓索引。根据您的标准 select 等高线后,收集所有 q 并计算它们 min/max/range。然后使用它们将单个 q 缩放到您需要的任何比例。在下面的示例中,我将其缩放为绿色分量的 8 位值。您可以根据需要按照红色和蓝色的图案。
请注意,在此图像中,大部分 q 都在 4.0 - 4.25 范围内,有一些异常值在 5.50(绘制直方图以查看该分布)。这会扭曲颜色图,因此大多数单元格将使用非常相似的颜色进行着色。但是,我希望这有助于您入门。我建议对 q 应用对数函数,以便在视觉上“展开”它们分布的下端。
- 编辑: 用 matplotlib 中的一个替换了原始颜色图。有关所有可能的颜色图选择,请参阅 。
import matplotlib.pyplot as plt
import math
import os
import cv2
import imutils
import numpy as np
# specify folders
filelocat = '/Users/kate/Desktop/SegmenterTest3/SegmentedCells/'
# process image
img = cv2.imread(os.path.join(filelocat, 'Seg3.png'))
image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(image, 60, 255, cv2.THRESH_BINARY)[1]
kernel = np.ones((20, 20), np.uint8)
closing = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# inverts image so that the objects are white (for analysis)
imagem = cv2.bitwise_not(closing)
# Find contours
cnts = cv2.findContours(imagem.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# calculate moments and extract cell shape info
moment_dict = {}
for index, cnt in enumerate(cnts):
moment_dict[index] = cv2.moments(cnt)
obj_properties = {}
for index, obj_moments in moment_dict.items():
if obj_moments['m00'] > 1000 and obj_moments['m00'] < 20000:
area = obj_moments['m00']
cx = obj_moments['m10'] / obj_moments['m00']
cy = obj_moments['m01'] / obj_moments['m00']
peri = cv2.arcLength(cnts[index], True)
q = (peri/(math.sqrt(area)))
props = {}
props['q'] = q
props['peri'] = peri
props['area'] = area
props['cx'] = cx
props['cy'] = cy
obj_properties[index] = props
all_the_q = [v['q'] for k, v in obj_properties.items()]
min_q = min(all_the_q)
max_q = max(all_the_q)
range_q = max_q - min_q
# colormapping of q scalars to BGR values
cmap = plt.cm.get_cmap('terrain')
for index, prop in obj_properties.items():
v = (prop['q'] - min_q) / range_q
r, g, b, a = [int(x) for x in cmap(v, bytes=True)]
cv2.drawContours(img, cnts, index, (b, g, r), -1)
cv2.imwrite('colored.png', img)
cv2.imshow('Biocells', img)
cv2.waitKey(10000)