fit_transform() 得到了意外的关键字参数 'dtype'
fit_transform() got an unexpected keyword argument 'dtype'
from sklearn.feature_extraction.text import CountVectorizer
# Define the cleaning pipeline we defined earlier
vectorizer = CountVectorizer(analyzer = message_cleaning)
tweets_countvectorizer = vectorizer.fit_transform(tweets_df['tweet'], dtype = np.uint8)
TypeError Traceback(最后一次调用)
在
3个
4 向量化器 = CountVectorizer(分析器 = message_cleaning)
----> 5 tweets_countvectorizer = vectorizer.fit_transform(tweets_df['tweet'], dtype = np.uint8)
TypeError: fit_transform() 得到了意外的关键字参数 'dtype'
应该将 dtype 参数传递给 CountVectorizer 的构造函数:
from sklearn.feature_extraction.text import CountVectorizer
# Define the cleaning pipeline we defined earlier
vectorizer = CountVectorizer(analyzer = message_cleaning, dtype = np.uint8)
tweets_countvectorizer = vectorizer.fit_transform(tweets_df['tweet'])
您需要在创建向量对象时将dtype
参数传递给构造函数:
from sklearn.feature_extraction.text import CountVectorizer
# Define the cleaning pipeline we defined earlier
vectorizer = CountVectorizer(analyzer = message_cleaning, dtype = np.uint8)
tweets_countvectorizer = vectorizer.fit_transform(tweets_df['tweet'])
from sklearn.feature_extraction.text import CountVectorizer
# Define the cleaning pipeline we defined earlier
vectorizer = CountVectorizer(analyzer = message_cleaning)
tweets_countvectorizer = vectorizer.fit_transform(tweets_df['tweet'], dtype = np.uint8)
TypeError Traceback(最后一次调用) 在 3个 4 向量化器 = CountVectorizer(分析器 = message_cleaning) ----> 5 tweets_countvectorizer = vectorizer.fit_transform(tweets_df['tweet'], dtype = np.uint8)
TypeError: fit_transform() 得到了意外的关键字参数 'dtype'
应该将 dtype 参数传递给 CountVectorizer 的构造函数:
from sklearn.feature_extraction.text import CountVectorizer
# Define the cleaning pipeline we defined earlier
vectorizer = CountVectorizer(analyzer = message_cleaning, dtype = np.uint8)
tweets_countvectorizer = vectorizer.fit_transform(tweets_df['tweet'])
您需要在创建向量对象时将dtype
参数传递给构造函数:
from sklearn.feature_extraction.text import CountVectorizer
# Define the cleaning pipeline we defined earlier
vectorizer = CountVectorizer(analyzer = message_cleaning, dtype = np.uint8)
tweets_countvectorizer = vectorizer.fit_transform(tweets_df['tweet'])