android 如何将图像传递给 tflite 模型
How to pass image to tflite model in android
我已将 Yolo 模型转换为 .tflite 以用于 android。这就是它在 python -
中的使用方式
net = cv2.dnn.readNet("yolov2.weights", "yolov2.cfg")
classes = []
with open("yolov3.txt", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
cap= cv2.VideoCapture(0)
while True:
_,frame= cap.read()
height,width,channel= frame.shape
blob = cv2.dnn.blobFromImage(frame, 0.00392, (320, 320), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.2:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
我使用 netron https://github.com/lutzroeder/netron 来可视化模型。输入描述为名称:输入,
类型:float32[1,416,416,3],
量化:0≤q≤255,
地点:399
输出为
姓名:output_boxes,
类型:float32[1,10647,8],
地点:400.
我的问题是关于在 android 中使用这个模型。我已经在“Interpreter tflite”中加载了模型,我正在以 byte[] 格式从相机获取输入帧。如何将其转换为 tflite.run(input, output) 所需的输入?
您需要调整输入图像的大小以匹配 TensorFlow-Lite
模型的输入大小,然后将其转换为 RGB
格式以提供给模型。
通过使用 TensorFlow-Lite
支持库中的 ImageProcessor
,您可以轻松地进行图像大小调整和转换。
ImageProcessor imageProcessor =
new ImageProcessor.Builder()
.add(new ResizeWithCropOrPadOp(cropSize, cropSize))
.add(new ResizeOp(imageSizeX, imageSizeY, ResizeMethod.NEAREST_NEIGHBOR))
.add(new Rot90Op(numRoration))
.add(getPreprocessNormalizeOp())
.build();
return imageProcessor.process(inputImageBuffer);
在使用解释器进行 运行 推理之后,将预处理后的图像提供给 TensorFlow-Lite
解释器:
tflite.run(inputImageBuffer.getBuffer(), outputProbabilityBuffer.getBuffer().rewind());
同时参考 this official example for more details, additionally you can refer this 示例。
我已将 Yolo 模型转换为 .tflite 以用于 android。这就是它在 python -
中的使用方式net = cv2.dnn.readNet("yolov2.weights", "yolov2.cfg")
classes = []
with open("yolov3.txt", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
cap= cv2.VideoCapture(0)
while True:
_,frame= cap.read()
height,width,channel= frame.shape
blob = cv2.dnn.blobFromImage(frame, 0.00392, (320, 320), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.2:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
我使用 netron https://github.com/lutzroeder/netron 来可视化模型。输入描述为名称:输入, 类型:float32[1,416,416,3], 量化:0≤q≤255, 地点:399 输出为 姓名:output_boxes, 类型:float32[1,10647,8], 地点:400.
我的问题是关于在 android 中使用这个模型。我已经在“Interpreter tflite”中加载了模型,我正在以 byte[] 格式从相机获取输入帧。如何将其转换为 tflite.run(input, output) 所需的输入?
您需要调整输入图像的大小以匹配 TensorFlow-Lite
模型的输入大小,然后将其转换为 RGB
格式以提供给模型。
通过使用 TensorFlow-Lite
支持库中的 ImageProcessor
,您可以轻松地进行图像大小调整和转换。
ImageProcessor imageProcessor =
new ImageProcessor.Builder()
.add(new ResizeWithCropOrPadOp(cropSize, cropSize))
.add(new ResizeOp(imageSizeX, imageSizeY, ResizeMethod.NEAREST_NEIGHBOR))
.add(new Rot90Op(numRoration))
.add(getPreprocessNormalizeOp())
.build();
return imageProcessor.process(inputImageBuffer);
在使用解释器进行 运行 推理之后,将预处理后的图像提供给 TensorFlow-Lite
解释器:
tflite.run(inputImageBuffer.getBuffer(), outputProbabilityBuffer.getBuffer().rewind());
同时参考 this official example for more details, additionally you can refer this 示例。