大型数组的numpy矢量化操作

numpy vectorized operation for a large array

我正在尝试通过 python3 对 numpy 数组进行一些计算。

数组:

   c0 c1 c2 c3
r0 1  5  2  7
r1 3  9  4  6
r2 8  2  1  3

这里的“cx”和“rx”是列名和行名。

如果元素不在给定的列列表中,我需要逐行计算每个元素的差异。

例如

 given a column list  [0, 2, 1] # they are column indices
 which means that 
    for r0, we need to calculate the difference between the c0 and all other columns, so we have 

    [1, 5-1, 2-1, 7-1]

    for r1,  we need to calculate the difference between the c2 and all other columns, so we have 

    [3-4, 9-4, 4, 6-4]

    for r2,  we need to calculate the difference between the c1 and all other columns, so we have 

    [8-2, 2, 1-2, 3-2]

所以,结果应该是

   1 4 1 6
   -1 5 4 2
   6 2 -1 1

因为数组可能很大,所以我想通过numpy向量化运算来计算,例如广播。

但是,我不确定如何有效地做到这一点。

我检查过, , , Replace For Loop with Numpy Vectorized Operation, Vectorize numpy array for loop

但是,none 对我有用。

感谢您的帮助!

先从数组中提取值,然后再做减法:

import numpy as np

a = np.array([[1,  5,  2,  7],
[3,  9,  4,  6],
[8,  2,  1,  3]])

cols = [0,2,1]

# create the index for advanced indexing
idx = np.arange(len(a)), cols

# extract values 
vals = a[idx]

# subtract array by the values
a -= vals[:, None]

# add original values back to corresponding position
a[idx] += vals 

print(a)

#[[ 1  4  1  6]
# [-1  5  4  2]
# [ 6  2 -1  1]]

Playground