Unpickling dictionary that holds pandas dataframes throws AttributeError: 'Dataframe' object has no attribute '_data'
Unpickling dictionary that holds pandas dataframes throws AttributeError: 'Dataframe' object has no attribute '_data'
我有一个 class 执行分析并将结果附加为 pandas 数据帧,作为对象属性:
>>> print(test.image.locate_DF)
y x mass ... raw_mass ep frame
0 60.177142 59.788709 33.433414 ... 242.080256 NaN 0
1 60.651991 59.773904 33.724308 ... 242.355784 NaN 1
2 60.790437 60.190234 31.117164 ... 236.276671 NaN 2
3 60.771933 60.048123 33.558372 ... 240.981395 NaN 3
4 60.251282 59.775139 31.881009 ... 239.239022 NaN 4
... ... ... ... ... ... ... ...
7212 68.186380 76.477449 18.122817 ... 176.523091 NaN 9410
7213 68.764444 76.574091 17.486454 ... 173.448306 NaN 9415
7214 68.191152 76.473477 17.402975 ... 172.848119 0.868326 9429
7215 67.034103 76.025885 17.010951 ... 170.928067 -0.600854 9431
7216 68.583276 75.309592 17.852992 ... 178.271558 NaN 9432
随后,我将所有重要的对象属性保存在字典中,并 pickle 以备后用:
def save_parameters(self, filepath):
param_dict = {}
try:
self.image.locate_DF
except AttributeError:
pass
else:
param_dict['optical_locate_DF'] = self.image.locate_DF
with open(filepath, 'wb') as handle:
pickle.dump(param_dict, handle, 5)
当尝试加载那个 pickled 文件时,我完全没有问题,数据框加载完美:
>>> test.save_parameters('test.pickle')
>>> with open('test.pickle', 'rb') as handle:
... result = pickle.load(handle)
...
>>> print(result.keys())
dict_keys(['optical_path', 'optical_feature_diameter', 'optical_feature_minmass', 'optical_locate_DF', 'electrical_path', 'electrical_raw_data', 'electrical_processed_data', 'electrical_mean_voltage'])
>>> print(result['optical_locate_DF'])
y x mass ... raw_mass ep frame
0 60.177142 59.788709 33.433414 ... 242.080256 NaN 0
1 60.651991 59.773904 33.724308 ... 242.355784 NaN 1
2 60.790437 60.190234 31.117164 ... 236.276671 NaN 2
3 60.771933 60.048123 33.558372 ... 240.981395 NaN 3
4 60.251282 59.775139 31.881009 ... 239.239022 NaN 4
... ... ... ... ... ... ... ...
7212 68.186380 76.477449 18.122817 ... 176.523091 NaN 9410
7213 68.764444 76.574091 17.486454 ... 173.448306 NaN 9415
7214 68.191152 76.473477 17.402975 ... 172.848119 0.868326 9429
7215 67.034103 76.025885 17.010951 ... 170.928067 -0.600854 9431
7216 68.583276 75.309592 17.852992 ... 178.271558 NaN 9432
[7217 rows x 9 columns]
然而,在 运行 我在 hpc 上分析了一堆这些文件之后,然后尝试打开同一个 pickled 文件(现在它的名称不同了,但它与上面显示的是同一个文件,带有对其进行了相同的分析),我被 pandas 抛出一个属性错误。它指出数据框没有“_data”属性。字典具有相同的键,并且打印不是数据框的键没有任何问题:
>>> resultfile = '../results/diam_15_minmass_17_dist_50_mem_5000_tracklength_500/R9_DNA_50mV_001.pickle'
>>> with open(resultfile, 'rb') as handle:
... result = pickle.load(handle)
...
>>> print(result.keys())
dict_keys(['optical_path', 'optical_feature_diameter', 'optical_feature_minmass', 'optical_locate_DF', 'optical_tracking_distance', 'optical_tracking_memory', 'optical_tracking_DF', 'optical_kinetics_DF', 'electrical_path', 'electrical_raw_data', 'electrical_processed_data', 'electrical_mean_voltage'])
>>> print(result['optical_locate_DF'])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/stevenvanuytsel/miniconda3/envs/simultaneous_measurements/lib/python3.8/site-packages/pandas/core/frame.py", line 680, in __repr__
self.to_string(
File "/Users/stevenvanuytsel/miniconda3/envs/simultaneous_measurements/lib/python3.8/site-packages/pandas/core/frame.py", line 801, in to_string
formatter = fmt.DataFrameFormatter(
File "/Users/stevenvanuytsel/miniconda3/envs/simultaneous_measurements/lib/python3.8/site-packages/pandas/io/formats/format.py", line 593, in __init__
self.max_rows_displayed = min(max_rows or len(self.frame), len(self.frame))
File "/Users/stevenvanuytsel/miniconda3/envs/simultaneous_measurements/lib/python3.8/site-packages/pandas/core/frame.py", line 1041, in __len__
return len(self.index)
File "/Users/stevenvanuytsel/miniconda3/envs/simultaneous_measurements/lib/python3.8/site-packages/pandas/core/generic.py", line 5270, in __getattr__
return object.__getattribute__(self, name)
File "pandas/_libs/properties.pyx", line 63, in pandas._libs.properties.AxisProperty.__get__
File "/Users/stevenvanuytsel/miniconda3/envs/simultaneous_measurements/lib/python3.8/site-packages/pandas/core/generic.py", line 5270, in __getattr__
return object.__getattribute__(self, name)
AttributeError: 'DataFrame' object has no attribute '_data'
我查看了 pickle 手册,并通过了一堆 SO 问题,但我似乎无法找出这里出了什么问题。有谁知道如何解决这个问题,以及我是否仍然可以访问该数据?
经过cross-checking模块版本的漫长而痛苦的过程,我发现这个错误是由于pandas版本的更新引起的。我的 mac 仍然是 运行 pandas 1.0.5,而 hpc 运行 pandas 1.1.0。显然,两者之间存在不匹配(不确定是在酸洗之后还是用于保存的其他文件格式)。
我遇到了同样的问题。我在 Pandas 1.1.1 的环境中生成了一个 Pandas 数据框,并将其保存到 pickle 文件中。
with open('file.pkl', 'wb') as f:
pickle.dump(data_frame_object, f)
在另一个会话中解开它并打印数据帧后,我得到了同样的错误。在不同环境中的一些测试显示出以下模式:
- Pandas >= 1.1.0 的环境:有效
- 环境 Pandas == 1.0.5:错误消息如上
- Pandas == 1.0.3 的环境:内核崩溃
我在使用 HDF5 格式时遇到了同样的错误,所以这似乎是数据帧和不同 Pandas 版本的兼容性问题。
在受影响的环境中将 Pandas 更新到 1.1.1 解决了我的问题。
也许问题已经解决了。
Emmm,不过还是想补充一下。
我将 pkl 文件保存在服务器上,但是当我将它加载到我的 MAC 上时,它崩溃了,显示 'Dataframe' object has no attribute '_data'
最后,我发现 Mac 上的 pandas 是 1.0.5,但服务器上是 1.1.5。当我把它更新到最新时,它就起作用了。
我有一个 class 执行分析并将结果附加为 pandas 数据帧,作为对象属性:
>>> print(test.image.locate_DF)
y x mass ... raw_mass ep frame
0 60.177142 59.788709 33.433414 ... 242.080256 NaN 0
1 60.651991 59.773904 33.724308 ... 242.355784 NaN 1
2 60.790437 60.190234 31.117164 ... 236.276671 NaN 2
3 60.771933 60.048123 33.558372 ... 240.981395 NaN 3
4 60.251282 59.775139 31.881009 ... 239.239022 NaN 4
... ... ... ... ... ... ... ...
7212 68.186380 76.477449 18.122817 ... 176.523091 NaN 9410
7213 68.764444 76.574091 17.486454 ... 173.448306 NaN 9415
7214 68.191152 76.473477 17.402975 ... 172.848119 0.868326 9429
7215 67.034103 76.025885 17.010951 ... 170.928067 -0.600854 9431
7216 68.583276 75.309592 17.852992 ... 178.271558 NaN 9432
随后,我将所有重要的对象属性保存在字典中,并 pickle 以备后用:
def save_parameters(self, filepath):
param_dict = {}
try:
self.image.locate_DF
except AttributeError:
pass
else:
param_dict['optical_locate_DF'] = self.image.locate_DF
with open(filepath, 'wb') as handle:
pickle.dump(param_dict, handle, 5)
当尝试加载那个 pickled 文件时,我完全没有问题,数据框加载完美:
>>> test.save_parameters('test.pickle')
>>> with open('test.pickle', 'rb') as handle:
... result = pickle.load(handle)
...
>>> print(result.keys())
dict_keys(['optical_path', 'optical_feature_diameter', 'optical_feature_minmass', 'optical_locate_DF', 'electrical_path', 'electrical_raw_data', 'electrical_processed_data', 'electrical_mean_voltage'])
>>> print(result['optical_locate_DF'])
y x mass ... raw_mass ep frame
0 60.177142 59.788709 33.433414 ... 242.080256 NaN 0
1 60.651991 59.773904 33.724308 ... 242.355784 NaN 1
2 60.790437 60.190234 31.117164 ... 236.276671 NaN 2
3 60.771933 60.048123 33.558372 ... 240.981395 NaN 3
4 60.251282 59.775139 31.881009 ... 239.239022 NaN 4
... ... ... ... ... ... ... ...
7212 68.186380 76.477449 18.122817 ... 176.523091 NaN 9410
7213 68.764444 76.574091 17.486454 ... 173.448306 NaN 9415
7214 68.191152 76.473477 17.402975 ... 172.848119 0.868326 9429
7215 67.034103 76.025885 17.010951 ... 170.928067 -0.600854 9431
7216 68.583276 75.309592 17.852992 ... 178.271558 NaN 9432
[7217 rows x 9 columns]
然而,在 运行 我在 hpc 上分析了一堆这些文件之后,然后尝试打开同一个 pickled 文件(现在它的名称不同了,但它与上面显示的是同一个文件,带有对其进行了相同的分析),我被 pandas 抛出一个属性错误。它指出数据框没有“_data”属性。字典具有相同的键,并且打印不是数据框的键没有任何问题:
>>> resultfile = '../results/diam_15_minmass_17_dist_50_mem_5000_tracklength_500/R9_DNA_50mV_001.pickle'
>>> with open(resultfile, 'rb') as handle:
... result = pickle.load(handle)
...
>>> print(result.keys())
dict_keys(['optical_path', 'optical_feature_diameter', 'optical_feature_minmass', 'optical_locate_DF', 'optical_tracking_distance', 'optical_tracking_memory', 'optical_tracking_DF', 'optical_kinetics_DF', 'electrical_path', 'electrical_raw_data', 'electrical_processed_data', 'electrical_mean_voltage'])
>>> print(result['optical_locate_DF'])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/stevenvanuytsel/miniconda3/envs/simultaneous_measurements/lib/python3.8/site-packages/pandas/core/frame.py", line 680, in __repr__
self.to_string(
File "/Users/stevenvanuytsel/miniconda3/envs/simultaneous_measurements/lib/python3.8/site-packages/pandas/core/frame.py", line 801, in to_string
formatter = fmt.DataFrameFormatter(
File "/Users/stevenvanuytsel/miniconda3/envs/simultaneous_measurements/lib/python3.8/site-packages/pandas/io/formats/format.py", line 593, in __init__
self.max_rows_displayed = min(max_rows or len(self.frame), len(self.frame))
File "/Users/stevenvanuytsel/miniconda3/envs/simultaneous_measurements/lib/python3.8/site-packages/pandas/core/frame.py", line 1041, in __len__
return len(self.index)
File "/Users/stevenvanuytsel/miniconda3/envs/simultaneous_measurements/lib/python3.8/site-packages/pandas/core/generic.py", line 5270, in __getattr__
return object.__getattribute__(self, name)
File "pandas/_libs/properties.pyx", line 63, in pandas._libs.properties.AxisProperty.__get__
File "/Users/stevenvanuytsel/miniconda3/envs/simultaneous_measurements/lib/python3.8/site-packages/pandas/core/generic.py", line 5270, in __getattr__
return object.__getattribute__(self, name)
AttributeError: 'DataFrame' object has no attribute '_data'
我查看了 pickle 手册,并通过了一堆 SO 问题,但我似乎无法找出这里出了什么问题。有谁知道如何解决这个问题,以及我是否仍然可以访问该数据?
经过cross-checking模块版本的漫长而痛苦的过程,我发现这个错误是由于pandas版本的更新引起的。我的 mac 仍然是 运行 pandas 1.0.5,而 hpc 运行 pandas 1.1.0。显然,两者之间存在不匹配(不确定是在酸洗之后还是用于保存的其他文件格式)。
我遇到了同样的问题。我在 Pandas 1.1.1 的环境中生成了一个 Pandas 数据框,并将其保存到 pickle 文件中。
with open('file.pkl', 'wb') as f:
pickle.dump(data_frame_object, f)
在另一个会话中解开它并打印数据帧后,我得到了同样的错误。在不同环境中的一些测试显示出以下模式:
- Pandas >= 1.1.0 的环境:有效
- 环境 Pandas == 1.0.5:错误消息如上
- Pandas == 1.0.3 的环境:内核崩溃
我在使用 HDF5 格式时遇到了同样的错误,所以这似乎是数据帧和不同 Pandas 版本的兼容性问题。
在受影响的环境中将 Pandas 更新到 1.1.1 解决了我的问题。
也许问题已经解决了。
Emmm,不过还是想补充一下。
我将 pkl 文件保存在服务器上,但是当我将它加载到我的 MAC 上时,它崩溃了,显示 'Dataframe' object has no attribute '_data'
最后,我发现 Mac 上的 pandas 是 1.0.5,但服务器上是 1.1.5。当我把它更新到最新时,它就起作用了。