在字符串的 lambda 函数中省略 Nans
Leaving out the Nans within the lambda function for strings
这个例子有点复杂。我在 lambda 函数的代码中使用了之前创建的函数 (document_path_similarity())。
import numpy as np
import pandas as pd
import nltk
from nltk.corpus import wordnet as wn
...<some code>
def similarity_score(s1, s2):
# where s1, s2 are the list of synsets.
lst = []
# For each synset in s1
for x in s1:
# finds the synset in s2 with the largest similarity value
lst.append(max([y.path_similarity(x) for y in s2 if y.path_similarity(x)])) #so its not None
return sum(lst)/float(len(lst))
def document_path_similarity(doc1, doc2):
# Finds the symmetrical similarity between doc1 and doc2
synsets1 = doc_to_synsets(doc1)
synsets2 = doc_to_synsets(doc2)
return (similarity_score(synsets1, synsets2) + similarity_score(synsets2, synsets1)) / 2
现在我正在尝试向我的数据框 df 添加一个新列 s_scores,它将显示 D1 列和 D2 列中的字符串之间的相似性分数。
Q D1 D2
1 1 After more than two years' detention under the... After more than two years in detention by the ...
2 1 "It still remains to be seen whether the reven... "It remains to be seen whether the revenue rec...
8 0 "It's a major victory for Maine, and it's a ma... The Maine program could be a model for other s...
9 1 Microsoft said Friday that it is halting devel... Microsoft will stop developing versions of its...
10 0 New legit download service launches with PC us... BuyMusic is the first subscription-free paid d...
我已尝试按以下方式处理此问题。
df['s_scores'] = df.apply(lambda x: document_path_similarity(x['D1'], x['D2']), axis=1)
这给出了
ValueError: ('max() arg is an empty sequence', 'occurred at index 8')
因为在应用 lambda 表达式后,索引 8 的 s_score 是 NaN。
这种情况发生在我的 df 中的几行。
8 0 "It's a major victory for Maine, and it's a ma... The Maine program could be a model for other s... NaN
如果我尝试应用 similarity_score() 而不是 document_path_similarity() 函数,则不会出现此错误。它运行正常,因为我有条件确保 'if y.path_similarity(x)' 没有 NaN 值。
我试过像这样添加'if x is not None'或'np.isnan(x)'。
df['s_scores'] = df.apply(lambda x: document_path_similarity(x.D1, x.D2),axis=1 if x is not None)
SyntaxError: invalid syntax
我什至试过这个:
df['s_scores'] = df.apply(lambda x: (similarity_score(x.D1, x.D2) + similarity_score(x.D2, x.D1)) / 2,axis=1)
AttributeError: ("'str' object has no attribute 'path_similarity'", 'occurred at index 0')
所以我不知道如何在我的函数中添加 NaN 异常?
我也很疑惑为什么document_path_similarity()不会像similarity_score()那样跳过NaN,如果前者是从后者派生出来的?
对不起,如果我试图解释我的功能是如何工作的,时间太长了。
非常感谢您的帮助。
这与您在另一个问题中提出的问题完全相同。 similarity 发布了包含错误的代码。你必须修补 similarity_score()
df = pd.read_csv(io.StringIO(""" Q D1 D2
1 1 After more than two years' detention under the... After more than two years in detention by the ...
2 1 "It still remains to be seen whether the reven... "It remains to be seen whether the revenue rec...
8 0 "It's a major victory for Maine, and it's a ma... The Maine program could be a model for other s...
9 1 Microsoft said Friday that it is halting devel... Microsoft will stop developing versions of its...
10 0 New legit download service launches with PC us... BuyMusic is the first subscription-free paid d..."""),
sep="\s\s+", engine="python")
def similarity_score(s1, s2):
list1 = []
for a in s1:
# patch +[0] at end so never finding max of empty list
list1.append(max([i.path_similarity(a) for i in s2 if i.path_similarity(a) is not None]+[0]))
output = sum(list1)/len(list1)
return output
df = df.assign(
s_scores=lambda x: x.apply(lambda r: document_path_similarity(r.D1, r.D2), axis=1),
s_scores2=lambda x: x.apply(lambda r: (similarity_score(doc_to_synsets(r.D1),
doc_to_synsets(r.D2)) +
similarity_score(doc_to_synsets(r.D2),
doc_to_synsets(r.D1))) / 2,axis=1)
)
print(df.to_string(index=False))
输出
Q D1 D2 s_scores s_scores2
1 After more than two years' detention under the... After more than two years in detention by the ... 0.782738 0.782738
1 "It still remains to be seen whether the reven... "It remains to be seen whether the revenue rec... 0.844444 0.844444
0 "It's a major victory for Maine, and it's a ma... The Maine program could be a model for other s... 0.407526 0.407526
1 Microsoft said Friday that it is halting devel... Microsoft will stop developing versions of its... 0.371869 0.371869
0 New legit download service launches with PC us... BuyMusic is the first subscription-free paid d... 0.048678 0.048678
我找到了另一种更改 similarity_score() 的方法,因此它会忽略空列表。
def similarity_score(s1, s2):
lst = []
for x in s1:
s = [x.path_similarity(y) for y in s2 if x.path_similarity(y) is not None]
if len(s)>0:
lst.append(max(s))
output = sum(lst)/len(lst)
return output
这个例子有点复杂。我在 lambda 函数的代码中使用了之前创建的函数 (document_path_similarity())。
import numpy as np
import pandas as pd
import nltk
from nltk.corpus import wordnet as wn
...<some code>
def similarity_score(s1, s2):
# where s1, s2 are the list of synsets.
lst = []
# For each synset in s1
for x in s1:
# finds the synset in s2 with the largest similarity value
lst.append(max([y.path_similarity(x) for y in s2 if y.path_similarity(x)])) #so its not None
return sum(lst)/float(len(lst))
def document_path_similarity(doc1, doc2):
# Finds the symmetrical similarity between doc1 and doc2
synsets1 = doc_to_synsets(doc1)
synsets2 = doc_to_synsets(doc2)
return (similarity_score(synsets1, synsets2) + similarity_score(synsets2, synsets1)) / 2
现在我正在尝试向我的数据框 df 添加一个新列 s_scores,它将显示 D1 列和 D2 列中的字符串之间的相似性分数。
Q D1 D2
1 1 After more than two years' detention under the... After more than two years in detention by the ...
2 1 "It still remains to be seen whether the reven... "It remains to be seen whether the revenue rec...
8 0 "It's a major victory for Maine, and it's a ma... The Maine program could be a model for other s...
9 1 Microsoft said Friday that it is halting devel... Microsoft will stop developing versions of its...
10 0 New legit download service launches with PC us... BuyMusic is the first subscription-free paid d...
我已尝试按以下方式处理此问题。
df['s_scores'] = df.apply(lambda x: document_path_similarity(x['D1'], x['D2']), axis=1)
这给出了
ValueError: ('max() arg is an empty sequence', 'occurred at index 8')
因为在应用 lambda 表达式后,索引 8 的 s_score 是 NaN。 这种情况发生在我的 df 中的几行。
8 0 "It's a major victory for Maine, and it's a ma... The Maine program could be a model for other s... NaN
如果我尝试应用 similarity_score() 而不是 document_path_similarity() 函数,则不会出现此错误。它运行正常,因为我有条件确保 'if y.path_similarity(x)' 没有 NaN 值。
我试过像这样添加'if x is not None'或'np.isnan(x)'。
df['s_scores'] = df.apply(lambda x: document_path_similarity(x.D1, x.D2),axis=1 if x is not None)
SyntaxError: invalid syntax
我什至试过这个:
df['s_scores'] = df.apply(lambda x: (similarity_score(x.D1, x.D2) + similarity_score(x.D2, x.D1)) / 2,axis=1)
AttributeError: ("'str' object has no attribute 'path_similarity'", 'occurred at index 0')
所以我不知道如何在我的函数中添加 NaN 异常?
我也很疑惑为什么document_path_similarity()不会像similarity_score()那样跳过NaN,如果前者是从后者派生出来的?
对不起,如果我试图解释我的功能是如何工作的,时间太长了。 非常感谢您的帮助。
这与您在另一个问题中提出的问题完全相同。 similarity 发布了包含错误的代码。你必须修补 similarity_score()
df = pd.read_csv(io.StringIO(""" Q D1 D2
1 1 After more than two years' detention under the... After more than two years in detention by the ...
2 1 "It still remains to be seen whether the reven... "It remains to be seen whether the revenue rec...
8 0 "It's a major victory for Maine, and it's a ma... The Maine program could be a model for other s...
9 1 Microsoft said Friday that it is halting devel... Microsoft will stop developing versions of its...
10 0 New legit download service launches with PC us... BuyMusic is the first subscription-free paid d..."""),
sep="\s\s+", engine="python")
def similarity_score(s1, s2):
list1 = []
for a in s1:
# patch +[0] at end so never finding max of empty list
list1.append(max([i.path_similarity(a) for i in s2 if i.path_similarity(a) is not None]+[0]))
output = sum(list1)/len(list1)
return output
df = df.assign(
s_scores=lambda x: x.apply(lambda r: document_path_similarity(r.D1, r.D2), axis=1),
s_scores2=lambda x: x.apply(lambda r: (similarity_score(doc_to_synsets(r.D1),
doc_to_synsets(r.D2)) +
similarity_score(doc_to_synsets(r.D2),
doc_to_synsets(r.D1))) / 2,axis=1)
)
print(df.to_string(index=False))
输出
Q D1 D2 s_scores s_scores2
1 After more than two years' detention under the... After more than two years in detention by the ... 0.782738 0.782738
1 "It still remains to be seen whether the reven... "It remains to be seen whether the revenue rec... 0.844444 0.844444
0 "It's a major victory for Maine, and it's a ma... The Maine program could be a model for other s... 0.407526 0.407526
1 Microsoft said Friday that it is halting devel... Microsoft will stop developing versions of its... 0.371869 0.371869
0 New legit download service launches with PC us... BuyMusic is the first subscription-free paid d... 0.048678 0.048678
我找到了另一种更改 similarity_score() 的方法,因此它会忽略空列表。
def similarity_score(s1, s2):
lst = []
for x in s1:
s = [x.path_similarity(y) for y in s2 if x.path_similarity(y) is not None]
if len(s)>0:
lst.append(max(s))
output = sum(lst)/len(lst)
return output