使用 Pandas DataFrame 计算百分比
Calculate Percentage using Pandas DataFrame
在这 5 个国家在所有奥运会上获得的所有奖牌中,
他们每个人获得的奖牌百分比是多少?
我已经使用 panda 数据框将所有 excel 文件合并到一个文件中,但现在仍然无法找到百分比
Country Gold Silver Bronze Total
0 USA 10 13 11 34
1 China 2 2 4 8
2 UK 1 0 1 2
3 Germany 12 16 8 36
4 Australia 2 0 0 2
0 USA 9 9 7 25
1 China 2 4 5 11
2 UK 0 1 0 1
3 Germany 11 12 6 29
4 Australia 1 0 1 2
0 USA 9 15 13 37
1 China 5 2 4 11
2 UK 1 0 0 1
3 Germany 10 13 7 30
4 Australia 2 1 0 3
Combined data sheet
Code that i have tried till now
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df= pd.DataFrame()
for f in ['E:\olympics\Olympics-2002.xlsx','E:\olympics\Olympics-
2006.xlsx','E:\olympics\Olympics-2010.xlsx',
'E:\olympics\Olympics-2014.xlsx','E:\olympics\Olympics-
2018.xlsx']:
data = pd.read_excel(f,'Sheet1')
df = df.append(data)
df.to_excel("E:\olympics\combineddata.xlsx")
data = pd.read_excel("E:\olympics\combineddata.xlsx")
print(data)
final_Data={}
for i in data['Country']:
x=i
t1=(data[(data.Country==x)].Total).tolist()
print("Name of Country=",i, int(sum(t1)))
final_Data.update({i:int(sum(t1))})
t3=data.groupby('Country').Total.sum()
t2= df['Total'].sum()
t4= t3/t2*100
print(t3)
print(t2)
print(t4)
这是怎么得到答案的....现在我需要把它放在情节中我想把它放在馅饼里
我没有您所拥有的确切数据集。我正在用类似的数据集进行解释。尝试添加一个包含奖牌总和的列 rows.then 通过将所有行除以整列的总和来找到百分比。
我将此发布为模型检查此
import pandas as pd
cars = {'Brand': ['Honda Civic','Toyota Corolla','Ford Focus','Audi A4'],
'ExshowroomPrice': [21000,26000,28000,34000],'RTOPrice': [2200,250,2700,3500]}
df = pd.DataFrame(cars, columns = ['Brand', 'ExshowroomPrice','RTOPrice'])
Brand ExshowroomPrice RTOPrice
0 Honda Civic 21000 2200
1 Toyota Corolla 26000 250
2 Ford Focus 28000 2700
3 Audi A4 34000 3500
df['percentage']=(df.ExshowroomPrice +df.RTOPrice) * 100
/(df.ExshowroomPrice.sum() +df.RTOPrice.sum())
print(df)
Brand ExshowroomPrice RTOPrice percentage
0 Honda Civic 21000 2200 19.719507
1 Toyota Corolla 26000 250 22.311942
2 Ford Focus 28000 2700 26.094348
3 Audi A4 34000 3500 31.874203
希望一切顺利
假设您已将 DataFrame 创建为 'df'
。然后你可以做下面的操作,先分组,再计算百分比。
df = df.groupby('Country').sum()
df['Gold_percent'] = (df['Gold'] / df['Gold'].sum()) * 100
df['Silver_percent'] = (df['Silver'] / df['Silver'].sum()) * 100
df['Bronze_percent'] = (df['Bronze'] / df['Bronze'].sum()) * 100
df['Total_percent'] = (df['Total'] / df['Total'].sum()) * 100
df.round(2)
print (df)
输出结果如下:
Gold Silver Bronze ... Silver_percent Bronze_percent Total_percent
Country ...
Australia 5 1 1 ... 1.14 1.49 3.02
China 9 8 13 ... 9.09 19.40 12.93
Germany 33 41 21 ... 46.59 31.34 40.95
UK 2 1 1 ... 1.14 1.49 1.72
USA 28 37 31 ... 42.05 46.27 41.38
在这 5 个国家在所有奥运会上获得的所有奖牌中, 他们每个人获得的奖牌百分比是多少?
我已经使用 panda 数据框将所有 excel 文件合并到一个文件中,但现在仍然无法找到百分比
Country Gold Silver Bronze Total
0 USA 10 13 11 34
1 China 2 2 4 8
2 UK 1 0 1 2
3 Germany 12 16 8 36
4 Australia 2 0 0 2
0 USA 9 9 7 25
1 China 2 4 5 11
2 UK 0 1 0 1
3 Germany 11 12 6 29
4 Australia 1 0 1 2
0 USA 9 15 13 37
1 China 5 2 4 11
2 UK 1 0 0 1
3 Germany 10 13 7 30
4 Australia 2 1 0 3
Combined data sheet
Code that i have tried till now
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df= pd.DataFrame()
for f in ['E:\olympics\Olympics-2002.xlsx','E:\olympics\Olympics-
2006.xlsx','E:\olympics\Olympics-2010.xlsx',
'E:\olympics\Olympics-2014.xlsx','E:\olympics\Olympics-
2018.xlsx']:
data = pd.read_excel(f,'Sheet1')
df = df.append(data)
df.to_excel("E:\olympics\combineddata.xlsx")
data = pd.read_excel("E:\olympics\combineddata.xlsx")
print(data)
final_Data={}
for i in data['Country']:
x=i
t1=(data[(data.Country==x)].Total).tolist()
print("Name of Country=",i, int(sum(t1)))
final_Data.update({i:int(sum(t1))})
t3=data.groupby('Country').Total.sum()
t2= df['Total'].sum()
t4= t3/t2*100
print(t3)
print(t2)
print(t4)
这是怎么得到答案的....现在我需要把它放在情节中我想把它放在馅饼里
我没有您所拥有的确切数据集。我正在用类似的数据集进行解释。尝试添加一个包含奖牌总和的列 rows.then 通过将所有行除以整列的总和来找到百分比。
我将此发布为模型检查此
import pandas as pd
cars = {'Brand': ['Honda Civic','Toyota Corolla','Ford Focus','Audi A4'],
'ExshowroomPrice': [21000,26000,28000,34000],'RTOPrice': [2200,250,2700,3500]}
df = pd.DataFrame(cars, columns = ['Brand', 'ExshowroomPrice','RTOPrice'])
Brand ExshowroomPrice RTOPrice
0 Honda Civic 21000 2200
1 Toyota Corolla 26000 250
2 Ford Focus 28000 2700
3 Audi A4 34000 3500
df['percentage']=(df.ExshowroomPrice +df.RTOPrice) * 100
/(df.ExshowroomPrice.sum() +df.RTOPrice.sum())
print(df)
Brand ExshowroomPrice RTOPrice percentage
0 Honda Civic 21000 2200 19.719507
1 Toyota Corolla 26000 250 22.311942
2 Ford Focus 28000 2700 26.094348
3 Audi A4 34000 3500 31.874203
希望一切顺利
假设您已将 DataFrame 创建为 'df'
。然后你可以做下面的操作,先分组,再计算百分比。
df = df.groupby('Country').sum()
df['Gold_percent'] = (df['Gold'] / df['Gold'].sum()) * 100
df['Silver_percent'] = (df['Silver'] / df['Silver'].sum()) * 100
df['Bronze_percent'] = (df['Bronze'] / df['Bronze'].sum()) * 100
df['Total_percent'] = (df['Total'] / df['Total'].sum()) * 100
df.round(2)
print (df)
输出结果如下:
Gold Silver Bronze ... Silver_percent Bronze_percent Total_percent
Country ...
Australia 5 1 1 ... 1.14 1.49 3.02
China 9 8 13 ... 9.09 19.40 12.93
Germany 33 41 21 ... 46.59 31.34 40.95
UK 2 1 1 ... 1.14 1.49 1.72
USA 28 37 31 ... 42.05 46.27 41.38