是否有任何逻辑可以取消引用变量以在 lambda 中使用以允许垃圾收集?

Is there any logic to dereferencing a variable for use within a lambda to allow garbage collection?

我有一个占用大量内存的对象 (foo) 和一个较小的对象 (bar)。我想确保 foo 被垃圾收集,但需要在程序的生命周期内访问我的 lambda 中的 hello 字段。

我想知道是否有任何逻辑可以在创建我的 lambda 之前首先将 bar 解除引用到它自己的变量中。我相信这可能会让 foo 被垃圾收集,但我不确定。

即在下面的示例中,因为我只使用 bar.hello,在 A 上执行 B 是否有任何逻辑允许 foo 被垃圾收集?第一个 lambda (A) 是否隐式持有对 foo 的引用,第二个 (B) 是否删除了该引用?

    class Bar { // Use within lambda
        String hello;
    }
    
    class Foo { // Memory-heavy class
        Bar bar;
        String world;
    }
    
    Foo foo = new Foo();
    
    // A (access bar through foo, will foo remain in memory?)
    run(() -> System.out.println(foo.bar.hello));
    
    // B (foo should have no more references, should be GC'd?)
    Bar bar = foo.bar;
    run(() -> System.out.println(bar.hello));

准确的说,foo是一个变量,它引用了一个class Foo实例。

但是,是的,更改 lambda 表达式将启用 class Foo 实例的垃圾回收。

public class LambdaTest {

public static class OuterClass {
    public InnerClass inner;
}

public static class InnerClass {
    public String value;
}

public static void main(String[] args) {
    // Attempting to define the value printer lambda here fails,
    // since 'outer1' is neither final nor effectively final.
    //
    // Requiring 'outer1' to be final enables safe inlining of
    // outer's value.  Otherwise, a reference to stack frame
    // would be held by the lambda.  Languages which place stack frames
    // on the heap don't do this.  java is not one of those language.

    // OuterClass outer1 = null;
    //
    // Runnable valuePrinter =
    //     () -> { System.out.println("Value [ " + outer.inner.value + " ]"); };
    // outer1 = new OuterClass();

    OuterClass outer1 = new OuterClass();       

    // The value of 'outer1' is inlined in the lambda.
    //
    // This creates a new reference to the value of 'outer1', which will prevent
    // that OuterClass instance from being garbage collected.

    Runnable valuePrinter1 =
        () -> { System.out.println("Inside lambda1 [ " + outer1.inner.value + " ]"); };

    // A new assignment to 'outer1' would cause the lambda definition to
    // fail.

    // outer = new OuterClass();

    outer1.inner = new InnerClass();
    outer1.inner.value = "TestValue1";
    System.out.println("Outside lambda1 [ " + outer1.inner.value + " ]");
    valuePrinter1.run();

    // While the 'outer1' value was inlined, the other parts of the
    // 'outer.inner.value' expression were not.
    //
    // Changes made to the 'value' and 'inner' references are visible to
    // the lambda.

    outer1.inner.value = "TestValue2";
    System.out.println("Outside lambda1 [ " + outer1.inner.value + " ]");
    valuePrinter1.run();
    
    outer1.inner = new InnerClass();
    outer1.inner.value = "TestValue3";
    System.out.println("Outside lambda1 [ " + outer1.inner.value + " ]");
    valuePrinter1.run();
    
    OuterClass outer2 = new OuterClass();               
    InnerClass inner2 = new InnerClass();
    outer2.inner = inner2;
    inner2.value = "TestValue4";

    // The InnerClass instance referenced by 'inner2' has no reference to
    // the OuterClass instance referenced by 'outer2'.
    //
    // The lambda 'valuePrinter2' inlines the reference held by 'inner2'.
    //
    // A live reference to 'valuePrinter2' will not prevent the value referenced
    // by 'outer2' from being garbage collected.

    System.out.println("Outside lambda2 [ " + inner2.value + " ]");
    Runnable valuePrinter2 =
        () -> { System.out.println("Inside lambda2 [ " + inner2.value + " ]"); };
    valuePrinter2.run();
}

// Output:
//
// Outside lambda1 [ TestValue1 ]
// Inside lambda1 [ TestValue1 ]
// Outside lambda1 [ TestValue2 ]
// Inside lambda1 [ TestValue2 ]
// Outside lambda1 [ TestValue3 ]
// Inside lambda1 [ TestValue3 ]
// Outside lambda2 [ TestValue4 ]
// Inside lambda2 [ TestValue4 ]

}

这是一个有趣的问题,恕我直言。

以下是我如何稍微简化代码库:

public class DeleteMe {

    public static void main(String[] args) {

        Foo foo = new Foo();

        Thread t = new Thread(() -> System.out.println(foo.bar.hello));
        t.start();

    }

    static class Bar { // Use within lambda
        String hello = "hello";
    }

    static class Foo { // Memory-heavy class
        Bar bar = new Bar();
    }
}

现在这是一个捕获 lambda,如果你 运行 它(带有特殊标志:-Djdk.internal.lambda.dumpProxyClasses=/some/path/goes/here)并查看 de-compiled 代码,你会注意到它“捕获" 一个 Foo 实例 。用某种更简单的话来说,lambda 将在内部转换为 class(实现 Runnable),它将以 Foo 实例作为参数。

如果将该代码更改为:

Foo foo = new Foo();
Bar bar = foo.bar;

Thread t = new Thread(() -> System.out.println(bar.hello));
t.start();

运行 使用相同的标志,反编译 - 你会看到现在捕获了一个 Bar 实例。

这改变了一切。


这意味着 Foo 实例符合 GC 条件,只要命中此行:

run(() -> System.out.println(bar.hello));

这正是您想要的。

其他代码有:

Thread t = new Thread(() -> System.out.println(foo.bar.hello));

正如我所说,将被转换为实现 Runnableclass 并且看起来像这样:

class RunnableImpl implements Runnable {
     private final Foo foo;

     public RunnableImpl(Foo foo) {
         this.foo = foo;
     }

     public void run(){
         Bar bar = foo.bar;
         System.out.println(bar.hello);
     }
}

不完全是这样,但是(对于这个例子)如果我把它完全翻译正确也没关系。这意味着 Thread 实例将在其中存储一个 Runnable 实例(RunnableImpl 的实例),如上所示,它又将具有 Foo 的实例.

所以在第二种变体中,foo只能在Thread结束时进行收集;这可能会晚很多,甚至在线程开始之前。