在多特征 TensorFlow 数据集中引用和标记单个特征列

Referencing and tokenizing single feature column in multi-feature TensorFlow Dataset

我正在尝试标记 TensorFlow 数据集中的单个列。如果只有一个特征列,我一直使用的方法效果很好,例如:

text = ["I played it a while but it was alright. The steam was a bit of trouble."
        " The more they move these game to steam the more of a hard time I have"
        " activating and playing a game. But in spite of that it was fun, I "
        "liked it. Now I am looking forward to anno 2205 I really want to "
        "play my way to the moon.",
        "This game is a bit hard to get the hang of, but when you do it's great."]
target = [0, 1]

df = pd.DataFrame({"text": text,
                   "target": target})

training_dataset = (
    tf.data.Dataset.from_tensor_slices((
        tf.cast(df.text.values, tf.string), 
        tf.cast(df.target, tf.int32))))

tokenizer = tfds.features.text.Tokenizer()

lowercase = True
vocabulary = Counter()
for text, _ in training_dataset:
    if lowercase:
        text = tf.strings.lower(text)
    tokens = tokenizer.tokenize(text.numpy())
    vocabulary.update(tokens)


vocab_size = 5000
vocabulary, _ = zip(*vocabulary.most_common(vocab_size))


encoder = tfds.features.text.TokenTextEncoder(vocabulary,
                                              lowercase=True,
                                              tokenizer=tokenizer)

然而,当我尝试在有一组特征列的地方执行此操作时,比如来自 make_csv_dataset(每个特征列都被命名),上述方法失败了。 (ValueError: Attempt to convert a value (OrderedDict([]) to a Tensor.).

我尝试使用以下方法在 for 循环中引用特定的特征列:

text = ["I played it a while but it was alright. The steam was a bit of trouble."
        " The more they move these game to steam the more of a hard time I have"
        " activating and playing a game. But in spite of that it was fun, I "
        "liked it. Now I am looking forward to anno 2205 I really want to "
        "play my way to the moon.",
        "This game is a bit hard to get the hang of, but when you do it's great."]
target = [0, 1]
gender = [1, 0]
age = [45, 35]



df = pd.DataFrame({"text": text,
                   "target": target,
                   "gender": gender,
                   "age": age})

df.to_csv('test.csv', index=False)

dataset = tf.data.experimental.make_csv_dataset(
    'test.csv',
    batch_size=2,
    label_name='target')

tokenizer = tfds.features.text.Tokenizer()

lowercase = True
vocabulary = Counter()
for features, _ in dataset:
    text = features['text']
    if lowercase:
        text = tf.strings.lower(text)
    tokens = tokenizer.tokenize(text.numpy())
    vocabulary.update(tokens)


vocab_size = 5000
vocabulary, _ = zip(*vocabulary.most_common(vocab_size))


encoder = tfds.features.text.TokenTextEncoder(vocabulary,
                                              lowercase=True,
                                              tokenizer=tokenizer)

我收到错误:Expected binary or unicode string, got array([])。引用单个特征列以便我可以标记化的正确方法是什么?通常,您可以在 .map 函数中使用 feature['column_name'] 方法引用特征列,例如:

def new_age_func(features, target):
    age = features['age']
    features['age'] = age/2
    return features, targets

dataset = dataset.map(new_age_func)

for features, target in dataset.take(2):
    print('Features: {}, Target {}'.format(features, target))

我尝试组合方法并通过映射函数生成词汇表。

tokenizer = tfds.features.text.Tokenizer()

lowercase = True
vocabulary = Counter()

def vocab_generator(features, target):
    text = features['text']
    if lowercase:
        text = tf.strings.lower(text)
        tokens = tokenizer.tokenize(text.numpy())
        vocabulary.update(tokens)

dataset = dataset.map(vocab_generator)

但这会导致错误:

AttributeError: in user code:

    <ipython-input-61-374e4c375b58>:10 vocab_generator  *
        tokens = tokenizer.tokenize(text.numpy())

    AttributeError: 'Tensor' object has no attribute 'numpy'

并将 tokenizer.tokenize(text.numpy()) 更改为 tokenizer.tokenize(text) 会引发另一个错误 TypeError: Expected binary or unicode string, got <tf.Tensor 'StringLower:0' shape=(2,) dtype=string>

错误只是 tokenizer.tokenize 需要一个字符串,而您给它的是一个列表。这个简单的编辑将起作用。我只是做了一个循环,将所有字符串提供给分词器,而不是给它一个字符串列表。

dataset = tf.data.experimental.make_csv_dataset(
    'test.csv',
    batch_size=2,
    label_name='target',
    num_epochs=1)

tokenizer = tfds.features.text.Tokenizer()

lowercase = True
vocabulary = Counter()
for features, _ in dataset:
    text = features['text']
    if lowercase:
        text = tf.strings.lower(text)
    for t in text:
        tokens = tokenizer.tokenize(t.numpy())
        vocabulary.update(tokens)

make_csv_dataset 创建的数据集的每个元素都是 CVS 文件的 行,而不是单行;这就是为什么它需要 batch_size 作为输入参数。另一方面,当前用于处理和标记文本特征的 for 循环每次需要单个输入样本(即行)。因此,tokenizer.tokenize 将在给定一批字符串的情况下失败并引发 TypeError: Expected binary or unicode string, got array(...).

用最少的更改解决此问题的一种方法是以某种方式首先 取消批处理 数据集,对数据集执行所有 pre-processings,然后 batch 数据集。幸运的是,这里有一个 built-in unbatch 方法可以使用:

dataset = tf.data.experimental.make_csv_dataset(
    ...,
    # This change is **IMPORTANT**, otherwise the `for` loop would continue forever!
    num_epochs=1
)

# Unbatch the dataset; this is required even if you have used `batch_size=1` above.
dataset = dataset.unbatch()

#############################################
#
# Do all the preprocessings on the dataset here...
#
##############################################


# When preprocessings are finished and you are ready to use your dataset:
#### 1. Batch the dataset (only if needed for or applicable to your specific workflow)
#### 2. Repeat the dataset (only if needed for or applicable to specific your workflow)
dataset = dataset.batch(BATCH_SIZE).repeat(NUM_EPOCHS or -1)

@NicolasGervais 的回答中建议的替代解决方案是调整和修改所有 pre-processing 代码以处理 批次样本 而不是单个样本一次取样。