在 Huggingface BERT 模型之上添加致密层

Add dense layer on top of Huggingface BERT model

我想在输出原始隐藏状态的裸 BERT 模型转换器之上添加一个密集层,然后微调生成的模型。具体来说,我使用的是 this 基本模型。这是模型应该做的:

  1. 对句子进行编码(句子的每个标记包含 768 个元素的向量)
  2. 只保留第一个向量(与第一个标记相关)
  3. 在此向量之上添加一个致密层,以获得所需的变换

到目前为止,我已经成功编码了句子:

from sklearn.neural_network import MLPRegressor

import torch

from transformers import AutoModel, AutoTokenizer

# List of strings
sentences = [...]
# List of numbers
labels = [...]

tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-italian-xxl-cased")
model = AutoModel.from_pretrained("dbmdz/bert-base-italian-xxl-cased")

# 2D array, one line per sentence containing the embedding of the first token
encoded_sentences = torch.stack([model(**tokenizer(s, return_tensors='pt'))[0][0][0]
                                 for s in sentences]).detach().numpy()

regr = MLPRegressor()
regr.fit(encoded_sentences, labels)

通过这种方式,我可以通过将编码的句子输入神经网络来训练它。但是,这种方法显然不能微调基本 BERT 模型。有谁能够帮助我?我如何构建一个可以完全微调的模型(可能在 pytorch 中或使用 Huggingface 库)?

如果您想调整 BERT 模型本身,则需要修改模型的参数。为此,您很可能希望使用 PyTorch 进行工作。下面是一些粗略的伪代码来说明:

from torch.optim import SGD

model = ... # whatever model you are using
parameters = model.parameters() # or some more specific set of parameters
optimizer = SGD(parameters,lr=.01) # or whatever optimizer you want
optimizer.zero_grad() # boiler-platy pytorch function

input = ... # whatever the appropriate input for your task is
label = ... # whatever the appropriate label for your task is
loss = model(**input, label) # usuall loss is the first item returned
loss.backward() # calculates gradient
optim.step() # runs optimization algorithm

我省略了所有相关细节,因为它们非常繁琐,而且对于您的具体任务是特定的。 Huggingface 有一篇很好的文章,详细介绍了这篇文章 here, and you will definitely want to refer to some pytorch documentation as you use any pytorch stuff. I highly recommend the pytorch blitz,然后再尝试对其进行任何严肃的处理。

有两种方法:由于您正在寻找 fine-tune 类似于 classification 的下游任务的模型,您可以直接使用:

BertForSequenceClassificationclass。在 768 的输出维度上执行 fine-tuning 逻辑回归层。

或者,您可以定义一个自定义模块,该模块基于 pre-trained 权重创建一个 bert 模型并在其之上添加层。

from transformers import BertModel
class CustomBERTModel(nn.Module):
    def __init__(self):
          super(CustomBERTModel, self).__init__()
          self.bert = BertModel.from_pretrained("dbmdz/bert-base-italian-xxl-cased")
          ### New layers:
          self.linear1 = nn.Linear(768, 256)
          self.linear2 = nn.Linear(256, 3) ## 3 is the number of classes in this example

    def forward(self, ids, mask):
          sequence_output, pooled_output = self.bert(
               ids, 
               attention_mask=mask)

          # sequence_output has the following shape: (batch_size, sequence_length, 768)
          linear1_output = self.linear1(sequence_output[:,0,:].view(-1,768)) ## extract the 1st token's embeddings

          linear2_output = self.linear2(linear2_output)

          return linear2_output

tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-italian-xxl-cased")
model = CustomBERTModel() # You can pass the parameters if required to have more flexible model
model.to(torch.device("cpu")) ## can be gpu
criterion = nn.CrossEntropyLoss() ## If required define your own criterion
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()))

for epoch in epochs:
    for batch in data_loader: ## If you have a DataLoader()  object to get the data.

        data = batch[0]
        targets = batch[1] ## assuming that data loader returns a tuple of data and its targets
        
        optimizer.zero_grad()   
        encoding = tokenizer.batch_encode_plus(data, return_tensors='pt', padding=True, truncation=True,max_length=50, add_special_tokens = True)
        outputs = model(input_ids, attention_mask=attention_mask)
        outputs = F.log_softmax(outputs, dim=1)
        input_ids = encoding['input_ids']
        attention_mask = encoding['attention_mask']
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()