如何将显示尺寸映射到 pandas 数据框列中的标准尺寸?

How to map display sizes to standard sizes in a pandas dataframe column?

我理解标题可能不是很清楚,但请听我说完。

我有一个 pandas 数据框列,其中包含约 850 个独特的显示尺寸,例如

1   320x480
2   480x320
3   382x215
4   676x320
5   694x320
6   1080x2123
7   2094x1080
8   1080x2020

我想匹配它们/将它们转换为最接近的标准显示尺寸(use-case 数据集中提供了大约 20 个)。

320x350
320x480
480x320
640x360
800x600
1024x768
1280x720
1280x800
1280x1024
1360x768
1366x768
1440x900
1536x864
1600x900 

我尝试将高度和宽度分成单独的列并将它们四舍五入,但它仍然创建了很多 non-standard 显示尺寸(对于我的用例)。

我怎样才能做到这一点?

想法是通过 Series.str.split, then use cross join by DataFrame.merge, get differences and sum them , get rows with minimal diffs by DataFrameGroupBy.idxmin and DataFrame.loc, last join together with DataFrame.pop 将 columns/Series 转换为 DataFrame 以供使用和删除列:

df11 = df1['col'].str.split('x', expand=True).astype(int)
df22 = df2['col'].str.split('x', expand=True).astype(int)

df = df11.assign(a=1).merge(df22.assign(a=1), on='a')
df['diff'] = df['0_x'].sub(df['0_y']).abs() + df['1_x'].sub(df['1_y']).abs()

df = df.loc[df.groupby(['0_x','1_x'])['diff'].idxmin()]
df['a'] = df.pop('0_x').astype(str).str.cat(df.pop('0_y').astype(str), 'x')
df['b'] = df.pop('1_x').astype(str).str.cat(df.pop('1_y').astype(str), 'x')
print (df)
             a  diff          b
1      320x320     0    480x480
28     382x320   197    215x350
16     480x480     0    320x320
45     676x640    76    320x360
59     694x640    94    320x360
106  1080x1280  1196  2020x1024
78   1080x1280  1299  2123x1024
97   2094x1600   674   1080x900

与欧几里得距离相似,样本数据相同输出:

df11 = df1['col'].str.split('x', expand=True).astype(int)
df22 = df2['col'].str.split('x', expand=True).astype(int)

df = df11.assign(a=1).merge(df22.assign(a=1), on='a')
df['diff'] = np.sqrt(df['0_x'].sub(df['0_y']) ** 2 + df['1_x'].sub(df['1_y']) ** 2)

df = df.loc[df.groupby(['0_x','1_x'])['diff'].idxmin()]
df['a'] = df.pop('0_x').astype(str).str.cat(df.pop('0_y').astype(str), 'x')
df['b'] = df.pop('1_x').astype(str).str.cat(df.pop('1_y').astype(str), 'x')
print (df)
             a         diff          b
1      320x320     0.000000    480x480
30     382x480   143.627992    215x320
16     480x480     0.000000    320x320
45     676x640    53.814496    320x360
59     694x640    67.201190    320x360
106  1080x1280  1015.881883  2020x1024
78   1080x1280  1117.050133  2123x1024
97   2094x1600   525.771814   1080x900

另一个 numpy 解决方案:

df11 = df1['col'].str.split('x', expand=True).astype(int)
df22 = df2['col'].str.split('x', expand=True).astype(int)

a1 = np.sqrt(np.square(df11[0].to_numpy()[:, None] - df22[0].to_numpy()) + 
             np.square(df11[1].to_numpy()[:, None] - df22[1].to_numpy()))

df1['b1'] = df2['col'].to_numpy()[np.argmin(a1, axis=1)]


a2 = (np.abs(df11[0].to_numpy()[:, None] - df22[0].to_numpy()) + 
      np.abs(df11[1].to_numpy()[:, None] - df22[1].to_numpy()))

df1['b2'] = df2['col'].to_numpy()[np.argmin(a2, axis=1)]
print (df1)
         col         b1         b2
1    320x480    320x480    320x480
2    480x320    480x320    480x320
3    382x215    480x320    320x350
4    676x320    640x360    640x360
5    694x320    640x360    640x360
6  1080x2123  1280x1024  1280x1024
7  2094x1080   1600x900   1600x900
8  1080x2020  1280x1024  1280x1024