How to fix Keras ValueError: Shapes (None, 3, 2) and (None, 2) are incompatible?

How to fix Keras ValueError: Shapes (None, 3, 2) and (None, 2) are incompatible?

下面的代码给我错误 ValueError: Shapes (None, 3, 2) and (None, 2) are incompatible。我想做的是构建一个多任务网络。我该如何解决?我正在使用 Tensorflow 2.3.0.

import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import GlobalAveragePooling2D, Dense, Dropout
from tensorflow.keras import Model


base_model = tf.keras.applications.EfficientNetB7(input_shape=(32,32, 3), weights='imagenet',
                                                  include_top=False)  # or weights='noisy-student'

for layer in base_model.layers[:]:
    layer.trainable = False

x = GlobalAveragePooling2D()(base_model.output)
dropout_rate = 0.3


x = Dense(256, activation='relu')(x)
x = Dropout(dropout_rate)(x)
x = Dense(256, activation='relu')(x)
x = Dropout(dropout_rate)(x)


all_target = []
loss_list = []
test_metrics = {}
for name, node in  [("task1", 2), ("task2", 2), ("task3", 2)]:
    y1 = Dense(128, activation='relu')(x)
    y1 = Dropout(dropout_rate)(y1)
    y1 = Dense(64, activation='relu')(y1)
    y1 = Dropout(dropout_rate)(y1)
    # y1 = Dense(64, activation='relu')(y1)
    # y1 = Dropout(dropout_rate)(y1)
    y1 = Dense(node, activation='softmax', name=name)(y1)
    all_target.append(y1)
    loss_list.append('categorical_crossentropy')
    test_metrics[name] = "accuracy"

#    model = Model(inputs=model_input, outputs=[y1, y2, y3])
model = Model(inputs=base_model.input, outputs=all_target)

model.compile(loss=loss_list, optimizer='adam', metrics=test_metrics)

res=np.random.randint(2, size=3072).reshape(32, 32, 3)
res=np.expand_dims(res, 0)

lab=np.array([[[0,1], [0,1], [0,1]]])

history = model.fit(res, y=lab, epochs=1, verbose=1)

如您所想,错误是由目标的形状引起的。 Keras 期望以下内容:

A list of 3 NumPy arrays (for your three tasks), of shape (n_samples, n_categories)

训练将成功 运行 这一行:

lab = [np.array([[0, 1]]), np.array([[0, 1]]), np.array([[0, 1]])]

我们有不同的版本,但是当 运行使用你的代码时,我遇到了一个信息更丰富的错误:

ValueError: Error when checking model target: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 3 array(s), for inputs ['task1', 'task2', 'task3'] but instead got the following list of 1 arrays: [array([[[0, 1], [0, 1], [0, 1]]])]...