如何按小时进行插值

how to interpolate on hourly basis

我有以下代码可以每天插入一些数据,有没有办法每小时插入一次 我做了一些研究,但没有找到任何东西

    import numpy as np
    from datetime import datetime,timedelta
    import pandas as pd

    # make your data a frame
    df = pd.DataFrame([[2020,    713000], 
    [    2019,    703000], 
    [    2018,    694000], 
    [    2017,    684000], 
    [    2016,    674000], 
    [    2015,    664000], 
    [    2014,    655000], 
    [    2013,    645000], 
    [    2012,    636000], 
    [    2011,    627000]], columns=['DateTime','pop'])

    # make DateTime column an datetime object
    df['DateTime'] = df['DateTime'].apply(lambda x: datetime(x,1,1))

    # create a time range for each day in your period
    time_range = np.arange(datetime(2011, 1,1), datetime(2021,1,1), timedelta(days=1))

    # make time_range a frame 
    af = pd.DataFrame(time_range, columns=['DateTime'])

    # merge both together (left join on column DateTime) and interpolate the gaps
    df = af.merge(df, on='DateTime', how='left').interpolate()

    print(df)

timedelta()

的使用小时数
time_range = np.arange(datetime(2011, 1,1), datetime(2021,1,1), timedelta(hours=1))

这会起作用