Raspberrypi W 中的 PiCamera mmal 错误为零

PiCamera mmal Error in Raspberrypi W Zero

我在Raspberrypi W Zero上做检测掩码项目。但是我无法捕捉到错误。

这是我的 Tensorflow 和 openCV 代码

# import the necessary packages
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
from imutils.video import VideoStream
import picamera
#from picamera import sleep
import numpy as np
import imutils
import time
import cv2
import os

def detect_and_predict_mask(frame, faceNet, maskNet):
    # grab the dimensions of the frame and then construct a blob
    # from it
    (h, w) = frame.shape[:2]
    blob = cv2.dnn.blobFromImage(frame, 1.0, (224, 224),
        (104.0, 177.0, 123.0))

    # pass the blob through the network and obtain the face detections
    faceNet.setInput(blob)
    detections = faceNet.forward()
    print(detections.shape)

    # initialize our list of faces, their corresponding locations,
    # and the list of predictions from our face mask network
    faces = []
    locs = []
    preds = []

    # loop over the detections
    for i in range(0, detections.shape[2]):
        # extract the confidence (i.e., probability) associated with
        # the detection
        confidence = detections[0, 0, i, 2]

        # filter out weak detections by ensuring the confidence is
        # greater than the minimum confidence
        if confidence > 0.5:
            # compute the (x, y)-coordinates of the bounding box for
            # the object
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")

            # ensure the bounding boxes fall within the dimensions of
            # the frame
            (startX, startY) = (max(0, startX), max(0, startY))
            (endX, endY) = (min(w - 1, endX), min(h - 1, endY))

            # extract the face ROI, convert it from BGR to RGB channel
            # ordering, resize it to 224x224, and preprocess it
            face = frame[startY:endY, startX:endX]
            face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
            face = cv2.resize(face, (224, 224))
            face = img_to_array(face)
            face = preprocess_input(face)

            # add the face and bounding boxes to their respective
            # lists
            faces.append(face)
            locs.append((startX, startY, endX, endY))

    # only make a predictions if at least one face was detected
    if len(faces) > 0:
        # for faster inference we'll make batch predictions on *all*
        # faces at the same time rather than one-by-one predictions
        # in the above `for` loop
        faces = np.array(faces, dtype="float32")
        preds = maskNet.predict(faces, batch_size=32)

    # return a 2-tuple of the face locations and their corresponding
    # locations
    return (locs, preds)

# load our serialized face detector model from disk
prototxtPath = r"/home/pi/Desktop/pi/face_detector/deploy.prototxt"
weightsPath = r"/home/pi/Desktop/pi/face_detector/res10_300x300_ssd_iter_140000.caffemodel"
faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)

# load the face mask detector model from disk
maskNet = load_model("./mask_detector.model")

# initialize the video stream
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()

cap = picamera.PiCamera()

# loop over the frames from the video stream
while(cap.isOpened()):
    # grab the frame from the threaded video stream and resize it
    # to have a maximum width of 400 pixels
    frame = vs.read()
    frame = imutils.resize(frame, width=400)
    

    
    # detect faces in the frame and determine if they are wearing a
    # face mask or not
    (locs, preds) = detect_and_predict_mask(frame, faceNet, maskNet)

    # loop over the detected face locations and their corresponding
    # locations
    for (box, pred) in zip(locs, preds):
        # unpack the bounding box and predictions
        (startX, startY, endX, endY) = box
        (mask, withoutMask) = pred

        # determine the class label and color we'll use to draw
        # the bounding box and text
        label = "Mask" if mask > withoutMask else "No Mask"
        color = (0, 255, 0) if label == "Mask" else (0, 0, 255)

        # include the probability in the label
        label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)

        # display the label and bounding box rectangle on the output
        # frame
        cv2.putText(frame, label, (startX, startY - 10),
            cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
        cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)

    # show the output frame
    cv2.imshow("Frame", frame)
    key = cv2.waitKey(1) & 0xFF

    # if the `q` key was pressed, break from the loop
    if key == ord("q"):
        cap.close()
        break

# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

我 运行 在 Raspberrypi W 零中的这个 Tensorflow 和 openCV 代码...但是这个错误困扰着我..

mmal: mmal_vc_port_enable: failed to enable port vc.null_sink:in:0(OPQV): ENOSPC
mmal: mmal_port_enable: failed to enable connected port (vc.null_sink:in:0(OPQV))0x34600e0 (ENOSPC)
mmal: mmal_connection_enable: output port couldn't be enabled
Traceback (most recent call last):
  File "detect_mask_video.py", line 88, in <module>
    cap = picamera.PiCamera()
  File "/usr/lib/python3/dist-packages/picamera/camera.py", line 433, in __init__
    self._init_preview()
  File "/usr/lib/python3/dist-packages/picamera/camera.py", line 513, in _init_preview
    self, self._camera.outputs[self.CAMERA_PREVIEW_PORT])
  File "/usr/lib/python3/dist-packages/picamera/renderers.py", line 558, in __init__
    self.renderer.inputs[0].connect(source).enable()
  File "/usr/lib/python3/dist-packages/picamera/mmalobj.py", line 2212, in enable
    prefix="Failed to enable connection")
  File "/usr/lib/python3/dist-packages/picamera/exc.py", line 184, in mmal_check
    raise PiCameraMMALError(status, prefix)
picamera.exc.PiCameraMMALError: Failed to enable connection: Out of resources

我在 google 中搜索了这个错误,但我无法解决这个问题...请帮助我...:D

到目前为止我做了什么:

raspberrypi update
Increasing memory
Reconnect PiCamera

在终端输入以下命令:

sudo modprobe bcm2835-v4l2

mmal 设备作为标准 v4l(Linux 的视频)设备进行访问。