从 Dataframe 的 4 列创建一个 3D 矩阵

create a 3D matrix from 4 columns of a Dataframe

我想从我的数据框的 4 列创建一个 3D 矩阵

输入:

df = pd.DataFrame({
  "u_id": [55218,55218,55218,55222],
  "i_id": [0,0,1,1],
  "Num": [0,2,1,2]
  "rating":[-1,2,0,2]})

x 轴:'u_id'; y 轴:'i_id' z 轴:'Num'

矩阵中的值应该是'rating'

结果应该是

[[[NaN,NaN],
  [-1 ,NaN]],
 [[NaN,NaN],
  [  0,NaN]],
 [[  2,NaN],
  [NaN,2]]]

到目前为止我尝试了什么:

x = df['u_id']
y = df['i_id']
z = df['Num']
value = df['rating']
Matrix = [[0 for m in len(z)] for m in len(z)] for c in len(x):

Matrix[c][r][m]= value

但这行不通。

我认为您的预期输出不代表数据框中的信息。但是,如果您希望 rating 的值与其他列一起作为索引放置在形状为 (3,2,2)

的 3D 数组中

设置输入数据

import numpy as np
import pandas as pd

df = pd.DataFrame({
  "u_id": [55218,55218,55218,55222],
  "i_id": [0,0,1,1],
  "Num": [0,2,1,2],      # <-- here was a small typo in your code
  "rating":[-1,2,0,2]})
df

输出:

    u_id  i_id  Num  rating
0  55218     0    0      -1
1  55218     0    2       2
2  55218     1    1       0
3  55222     1    2       2

首先将u_id转换为合适的索引

df['u_id'] = df['u_id'].astype('category').cat.codes
df[['Num','u_id','i_id','rating']] # order columns to correspond to coordinates

输出:

   Num  u_id  i_id  rating
0    0     0     0      -1
1    2     0     0       2
2    1     0     1       0
3    2     1     1       2

然后创建输出数组并填写 rating

x = np.full(df[['Num','u_id','i_id']].nunique(), np.nan)
x[df['Num'], df['u_id'], df['i_id']] = df['rating']
x

输出:

array([[[-1., nan],
        [nan, nan]],

       [[nan,  0.],
        [nan, nan]],

       [[ 2., nan],
        [nan,  2.]]])