Numpy 块重塑

Numpy blocks reshaping

我正在寻找一种方法来重塑以下 1d-numpy 数组:

# dimensions
n = 2 # int : 1 ... N
h = 2 # int : 1 ... N
m = n*(2*h+1)

input_data = np.arange(0,(n*(2*h+1))**2)

预期输出应重塑为 (2*h+1)**2 个形状为 (n,n) 的块,例如:

input_data.reshape(((2*h+1)**2,n,n))
>>> array([[[ 0  1]
            [ 2  3]]

           [[ 4  5]
            [ 6  7]]
              ...

           [[92 93]
            [94 95]]

           [[96 97]
            [98 99]]]

这些块最终需要重新整形为 (m,m) 矩阵,以便它们以 2*h+1 块的行堆叠:

>>> array([[ 0,  1,  4,  5,  8,  9, 12, 13, 16, 17],
           [ 2,  3,  6,  7, 10, 11, 14, 15, 18, 19],
                              ...
           [80, 81, 84, 85, 88, 89, 92, 93, 96, 97],
           [82, 83, 86, 87, 90, 91, 94, 95, 98, 99]])

我的问题是,在第一次重塑 (n,n) 块后,我似乎无法找到合适的轴排列。我已经看过几个答案,例如 但徒劳无功。

由于实际尺寸 nh 相当大,并且此操作在迭代过程中进行,我正在寻找一种有效的重塑操作。

我不认为你可以单独使用 reshapetranspose 来做到这一点(尽管我很想被证明是错误的)。使用 np.block 可以,但有点乱:

np.block([list(i) for i in input_data.reshape( (2*h+1), (2*h+1), n, n )])

array([[ 0,  1,  4,  5,  8,  9, 12, 13, 16, 17],
       [ 2,  3,  6,  7, 10, 11, 14, 15, 18, 19],
       [20, 21, 24, 25, 28, 29, 32, 33, 36, 37],
       [22, 23, 26, 27, 30, 31, 34, 35, 38, 39],
       [40, 41, 44, 45, 48, 49, 52, 53, 56, 57],
       [42, 43, 46, 47, 50, 51, 54, 55, 58, 59],
       [60, 61, 64, 65, 68, 69, 72, 73, 76, 77],
       [62, 63, 66, 67, 70, 71, 74, 75, 78, 79],
       [80, 81, 84, 85, 88, 89, 92, 93, 96, 97],
       [82, 83, 86, 87, 90, 91, 94, 95, 98, 99]])

编辑:没关系,你可以不用 np.block:

input_data.reshape( (2*h+1), (2*h+1), n, n).transpose(0, 2, 1, 3).reshape(10, 10)

array([[ 0,  1,  4,  5,  8,  9, 12, 13, 16, 17],
       [ 2,  3,  6,  7, 10, 11, 14, 15, 18, 19],
       [20, 21, 24, 25, 28, 29, 32, 33, 36, 37],
       [22, 23, 26, 27, 30, 31, 34, 35, 38, 39],
       [40, 41, 44, 45, 48, 49, 52, 53, 56, 57],
       [42, 43, 46, 47, 50, 51, 54, 55, 58, 59],
       [60, 61, 64, 65, 68, 69, 72, 73, 76, 77],
       [62, 63, 66, 67, 70, 71, 74, 75, 78, 79],
       [80, 81, 84, 85, 88, 89, 92, 93, 96, 97],
       [82, 83, 86, 87, 90, 91, 94, 95, 98, 99]])