quanteda:具有新文本和旧词汇的 dtm
quanteda: dtm with new text and old vocabulary
我使用 quanteda 构建文档术语矩阵:
library(quanteda)
mytext = "This is my old text"
dtm <- dfm(mytext, tolower=T)
convert(dtm,to="data.frame")
产生:
doc_id this is my old text
1 text1 1 1 1 1 1
我需要使“新”文本(新语料库)适合我现有的 dtm(使用相同的词汇表以便出现相同的矩阵列)
假设我的“新”text/corpus 是:
newtext = "This is my new text"
如何将这个“新”text/corpus 与现有的 dtm 词汇表相匹配,以便获得如下矩阵:
doc_id this is my old text
1 text1 1 1 1 0 1
您需要 dfm_match()
,然后再转换为 data.frame。
library(quanteda)
## Package version: 2.1.2
mytext <- c(oldtext = "This is my old text")
dtm_old <- dfm(mytext)
dtm_old
## Document-feature matrix of: 1 document, 5 features (0.0% sparse).
## features
## docs this is my old text
## oldtext 1 1 1 1 1
newtext <- c(newtext = "This is my new text")
dtm_new <- dfm(newtext)
dtm_new
## Document-feature matrix of: 1 document, 5 features (0.0% sparse).
## features
## docs this is my new text
## newtext 1 1 1 1 1
为了匹配它们,使用 dfm_match()
使新的 dfm 符合旧的功能集和顺序:
dtm_matched <- dfm_match(dtm_new, featnames(dtm_old))
dtm_matched
## Document-feature matrix of: 1 document, 5 features (20.0% sparse).
## features
## docs this is my old text
## newtext 1 1 1 0 1
convert(dtm_matched, to = "data.frame")
## doc_id this is my old text
## 1 newtext 1 1 1 0 1
我使用 quanteda 构建文档术语矩阵:
library(quanteda)
mytext = "This is my old text"
dtm <- dfm(mytext, tolower=T)
convert(dtm,to="data.frame")
产生:
doc_id this is my old text
1 text1 1 1 1 1 1
我需要使“新”文本(新语料库)适合我现有的 dtm(使用相同的词汇表以便出现相同的矩阵列)
假设我的“新”text/corpus 是:
newtext = "This is my new text"
如何将这个“新”text/corpus 与现有的 dtm 词汇表相匹配,以便获得如下矩阵:
doc_id this is my old text
1 text1 1 1 1 0 1
您需要 dfm_match()
,然后再转换为 data.frame。
library(quanteda)
## Package version: 2.1.2
mytext <- c(oldtext = "This is my old text")
dtm_old <- dfm(mytext)
dtm_old
## Document-feature matrix of: 1 document, 5 features (0.0% sparse).
## features
## docs this is my old text
## oldtext 1 1 1 1 1
newtext <- c(newtext = "This is my new text")
dtm_new <- dfm(newtext)
dtm_new
## Document-feature matrix of: 1 document, 5 features (0.0% sparse).
## features
## docs this is my new text
## newtext 1 1 1 1 1
为了匹配它们,使用 dfm_match()
使新的 dfm 符合旧的功能集和顺序:
dtm_matched <- dfm_match(dtm_new, featnames(dtm_old))
dtm_matched
## Document-feature matrix of: 1 document, 5 features (20.0% sparse).
## features
## docs this is my old text
## newtext 1 1 1 0 1
convert(dtm_matched, to = "data.frame")
## doc_id this is my old text
## 1 newtext 1 1 1 0 1