Python / Pandas:用顺序填充NaN - 线性插值--> ffill --> bfill

Python / Pandas: Fill NaN with order - linear interpolation --> ffill --> bfill

我有一个df:

     company  year      revenues
0  company 1  2019   1,425,000,000
1  company 1  2018   1,576,000,000
2  company 1  2017   1,615,000,000
3  company 1  2016   1,498,000,000
4  company 1  2015   1,569,000,000
5  company 2  2019             nan
6  company 2  2018   1,061,757,075
7  company 2  2017             nan
8  company 2  2016     573,414,893
9  company 2  2015     599,402,347

我想fill nan 值,有订单。我想先线性插值,然后向前填充,然后向后填充。我目前有:

f_2_impute = [x for x in cl_data.columns if cl_data[x].dtypes != 'O' and 'total' not in x and 'year' not in x]

def ffbf(x):
    return x.ffill().bfill()

group_with = ['company']

for x in cl_data[f_2_impute]:
    cl_data[x] = cl_data.groupby(group_with)[x].apply(lambda fill_it: ffbf(fill_it))

执行 ffill()bfill()。理想情况下,我想要一个函数,它首先尝试对缺失值进行线性插值,然后尝试向前填充它们,然后向后填充它们。

有什么快速实现的方法吗?提前致谢。

我认为您需要先将列转换为浮点数,如果 , 存在:

df = pd.read_csv(file, thousands=',')

或:

df['revenues'] = df['revenues'].replace(',','', regex=True).astype(float)

然后添加DataFrame.interpolate:

def ffbf(x):
    return x.interpolate().ffill().bfill()