按 ID 对 Pandas 行进行分组,当它出现在具有相同 ID 的所有行上时,将它们向前填充到右侧并保留 NaN
Group Pandas rows by ID and forward fill them to the right retaining NaN when it appears on all the rows with the same ID
我有一个 Pandas DataFrame 我需要:
- 按 ID 列分组(不在索引中)
- 仅当前一个值不是 NaN (
np.nan
) 时,才用前一个值(多列)向右填充行
对于每个 ID 分类值和每个指标列(参见下面示例中的 aX
列)只有一个值(其他多行时为 NaN - np.nan
)。
以此为例:
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: my_df = pd.DataFrame([
...: {"id": 1, "a1": 100.0, "a2": np.nan, "a3": np.nan, "a4": 90.0},
...: {"id": 1, "a1": np.nan, "a2": np.nan, "a3": 80.0, "a4": np.nan},
...: {"id": 20, "a1": np.nan, "a2": np.nan, "a3": 100.0, "a4": np.nan},
...: {"id": 20, "a1": np.nan, "a2": np.nan, "a3": np.nan, "a4": 30.0},
...: ])
In [4]: my_df.head(len(my_df))
Out[4]:
id a1 a2 a3 a4
0 1 100.0 NaN NaN 90.0
1 1 NaN NaN 80.0 NaN
2 20 NaN NaN 100.0 NaN
3 20 NaN NaN NaN 30.0
我还有很多专栏,例如 a1
到 a4
。
我愿意:
- 假装
np.nan
为零 0.0
当在同一列和不同行(具有相同 ID)上有一个数字时,我可以将它们加在一起,就像 groupby
和后续聚合函数
- 仅当左侧前一列的某处有数字时,才在同一唯一行(按 ID)向右填充
基本上在示例中这意味着:
- ID
1
"a2"=100.0
- 对于 ID
2
"a1"
和 "a2"
都是 np.nan
看这里:
In [5]: wanted_df = pd.DataFrame([
...: {"id": 1, "a1": 100.0, "a2": 100.0, "a3": 80.0, "a4": 90.0},
...: {"id": 20, "a1": np.nan, "a2": np.nan, "a3": 100.0, "a4": 30.0},
...: ])
In [6]: wanted_df.head(len(wanted_df))
Out[6]:
id a1 a2 a3 a4
0 1 100.0 100.0 80.0 90.0
1 20 NaN NaN 100.0 30.0
In [7]:
右边的前向填充应该应用于同一行的多个列,
不仅是最右边的一行。
当我使用 my_df.interpolate(method='pad', axis=1,limit=None,limit_direction='forward',limit_area=None,downcast=None,)
时,同一 ID 仍会得到多行。
当我使用 my_df.groupby("id").sum()
时,我到处都看到 0.0
而不是在上面定义的那些场景中保留 NaN 值。
当我使用 my_df.groupby("id").apply(np.sum)
时,ID 列也被求和,所以这是错误的,因为它应该被保留。
我该怎么做?
一个想法是使用 min_count=1
到 sum
:
df = my_df.groupby("id").sum(min_count=1)
print (df)
a1 a2 a3 a4
id
1 100.0 NaN 80.0 90.0
20 NaN NaN 100.0 30.0
或者如果需要第一个非缺失值是可能的使用GroupBy.first
:
df = my_df.groupby("id").first()
print (df)
a1 a2 a3 a4
id
1 100.0 NaN 80.0 90.0
20 NaN NaN 100.0 30.0
更多的问题是如果每个组有多个非缺失值并且需要所有这些值:
#added 20 to a1
my_df = pd.DataFrame([
{"id": 1, "a1": 100.0, "a2": np.nan, "a3": np.nan, "a4": 90.0},
{"id": 1, "a1": 20, "a2": np.nan, "a3": 80.0, "a4": np.nan},
{"id": 20, "a1": np.nan, "a2": np.nan, "a3": 100.0, "a4": np.nan},
{"id": 20, "a1": np.nan, "a2": np.nan, "a3": np.nan, "a4": 30.0},
])
print (my_df)
id a1 a2 a3 a4
0 1 100.0 NaN NaN 90.0
1 1 20.0 NaN 80.0 NaN
2 20 NaN NaN 100.0 NaN
3 20 NaN NaN NaN 30.0
def f(x):
return x.apply(lambda x: pd.Series(x.dropna().to_numpy()))
df1 = (my_df.set_index('id')
.groupby("id")
.apply(f)
.reset_index(level=1, drop=True)
.reset_index())
print (df1)
id a1 a2 a3 a4
0 1 100.0 NaN 80.0 90.0
1 1 20.0 NaN NaN NaN
2 20 NaN NaN 100.0 30.0
第一个和第二个解决方案的工作方式不同:
df2 = my_df.groupby("id").sum(min_count=1)
print (df2)
a1 a2 a3 a4
id
1 120.0 NaN 80.0 90.0
20 NaN NaN 100.0 30.0
df3 = my_df.groupby("id").first()
print (df3)
a1 a2 a3 a4
id
1 100.0 NaN 80.0 90.0
20 NaN NaN 100.0 30.0
如果相同类型的值,这里的数字也可以使用:
#
def justify(a, invalid_val=0, axis=1, side='left'):
"""
Justifies a 2D array
Parameters
----------
A : ndarray
Input array to be justified
axis : int
Axis along which justification is to be made
side : str
Direction of justification. It could be 'left', 'right', 'up', 'down'
It should be 'left' or 'right' for axis=1 and 'up' or 'down' for axis=0.
"""
if invalid_val is np.nan:
mask = ~np.isnan(a)
else:
mask = a!=invalid_val
justified_mask = np.sort(mask,axis=axis)
if (side=='up') | (side=='left'):
justified_mask = np.flip(justified_mask,axis=axis)
out = np.full(a.shape, invalid_val)
if axis==1:
out[justified_mask] = a[mask]
else:
out.T[justified_mask.T] = a.T[mask.T]
return out
f = lambda x: pd.DataFrame(justify(x.to_numpy(),
invalid_val=np.nan,
axis=0,
side='up'), columns=my_df.columns.drop('id'))
.dropna(how='all')
df1 = (my_df.set_index('id')
.groupby("id")
.apply(f)
.reset_index(level=1, drop=True)
.reset_index())
print (df1)
id a1 a2 a3 a4
0 1 100.0 NaN 80.0 90.0
1 1 20.0 NaN NaN NaN
2 20 NaN NaN 100.0 30.0
我有一个 Pandas DataFrame 我需要:
- 按 ID 列分组(不在索引中)
- 仅当前一个值不是 NaN (
np.nan
) 时,才用前一个值(多列)向右填充行
对于每个 ID 分类值和每个指标列(参见下面示例中的 aX
列)只有一个值(其他多行时为 NaN - np.nan
)。
以此为例:
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: my_df = pd.DataFrame([
...: {"id": 1, "a1": 100.0, "a2": np.nan, "a3": np.nan, "a4": 90.0},
...: {"id": 1, "a1": np.nan, "a2": np.nan, "a3": 80.0, "a4": np.nan},
...: {"id": 20, "a1": np.nan, "a2": np.nan, "a3": 100.0, "a4": np.nan},
...: {"id": 20, "a1": np.nan, "a2": np.nan, "a3": np.nan, "a4": 30.0},
...: ])
In [4]: my_df.head(len(my_df))
Out[4]:
id a1 a2 a3 a4
0 1 100.0 NaN NaN 90.0
1 1 NaN NaN 80.0 NaN
2 20 NaN NaN 100.0 NaN
3 20 NaN NaN NaN 30.0
我还有很多专栏,例如 a1
到 a4
。
我愿意:
- 假装
np.nan
为零0.0
当在同一列和不同行(具有相同 ID)上有一个数字时,我可以将它们加在一起,就像groupby
和后续聚合函数 - 仅当左侧前一列的某处有数字时,才在同一唯一行(按 ID)向右填充
基本上在示例中这意味着:
- ID
1
"a2"=100.0
- 对于 ID
2
"a1"
和"a2"
都是np.nan
看这里:
In [5]: wanted_df = pd.DataFrame([
...: {"id": 1, "a1": 100.0, "a2": 100.0, "a3": 80.0, "a4": 90.0},
...: {"id": 20, "a1": np.nan, "a2": np.nan, "a3": 100.0, "a4": 30.0},
...: ])
In [6]: wanted_df.head(len(wanted_df))
Out[6]:
id a1 a2 a3 a4
0 1 100.0 100.0 80.0 90.0
1 20 NaN NaN 100.0 30.0
In [7]:
右边的前向填充应该应用于同一行的多个列, 不仅是最右边的一行。
当我使用 my_df.interpolate(method='pad', axis=1,limit=None,limit_direction='forward',limit_area=None,downcast=None,)
时,同一 ID 仍会得到多行。
当我使用 my_df.groupby("id").sum()
时,我到处都看到 0.0
而不是在上面定义的那些场景中保留 NaN 值。
当我使用 my_df.groupby("id").apply(np.sum)
时,ID 列也被求和,所以这是错误的,因为它应该被保留。
我该怎么做?
一个想法是使用 min_count=1
到 sum
:
df = my_df.groupby("id").sum(min_count=1)
print (df)
a1 a2 a3 a4
id
1 100.0 NaN 80.0 90.0
20 NaN NaN 100.0 30.0
或者如果需要第一个非缺失值是可能的使用GroupBy.first
:
df = my_df.groupby("id").first()
print (df)
a1 a2 a3 a4
id
1 100.0 NaN 80.0 90.0
20 NaN NaN 100.0 30.0
更多的问题是如果每个组有多个非缺失值并且需要所有这些值:
#added 20 to a1
my_df = pd.DataFrame([
{"id": 1, "a1": 100.0, "a2": np.nan, "a3": np.nan, "a4": 90.0},
{"id": 1, "a1": 20, "a2": np.nan, "a3": 80.0, "a4": np.nan},
{"id": 20, "a1": np.nan, "a2": np.nan, "a3": 100.0, "a4": np.nan},
{"id": 20, "a1": np.nan, "a2": np.nan, "a3": np.nan, "a4": 30.0},
])
print (my_df)
id a1 a2 a3 a4
0 1 100.0 NaN NaN 90.0
1 1 20.0 NaN 80.0 NaN
2 20 NaN NaN 100.0 NaN
3 20 NaN NaN NaN 30.0
def f(x):
return x.apply(lambda x: pd.Series(x.dropna().to_numpy()))
df1 = (my_df.set_index('id')
.groupby("id")
.apply(f)
.reset_index(level=1, drop=True)
.reset_index())
print (df1)
id a1 a2 a3 a4
0 1 100.0 NaN 80.0 90.0
1 1 20.0 NaN NaN NaN
2 20 NaN NaN 100.0 30.0
第一个和第二个解决方案的工作方式不同:
df2 = my_df.groupby("id").sum(min_count=1)
print (df2)
a1 a2 a3 a4
id
1 120.0 NaN 80.0 90.0
20 NaN NaN 100.0 30.0
df3 = my_df.groupby("id").first()
print (df3)
a1 a2 a3 a4
id
1 100.0 NaN 80.0 90.0
20 NaN NaN 100.0 30.0
如果相同类型的值,这里的数字也可以使用:
#
def justify(a, invalid_val=0, axis=1, side='left'):
"""
Justifies a 2D array
Parameters
----------
A : ndarray
Input array to be justified
axis : int
Axis along which justification is to be made
side : str
Direction of justification. It could be 'left', 'right', 'up', 'down'
It should be 'left' or 'right' for axis=1 and 'up' or 'down' for axis=0.
"""
if invalid_val is np.nan:
mask = ~np.isnan(a)
else:
mask = a!=invalid_val
justified_mask = np.sort(mask,axis=axis)
if (side=='up') | (side=='left'):
justified_mask = np.flip(justified_mask,axis=axis)
out = np.full(a.shape, invalid_val)
if axis==1:
out[justified_mask] = a[mask]
else:
out.T[justified_mask.T] = a.T[mask.T]
return out
f = lambda x: pd.DataFrame(justify(x.to_numpy(),
invalid_val=np.nan,
axis=0,
side='up'), columns=my_df.columns.drop('id'))
.dropna(how='all')
df1 = (my_df.set_index('id')
.groupby("id")
.apply(f)
.reset_index(level=1, drop=True)
.reset_index())
print (df1)
id a1 a2 a3 a4
0 1 100.0 NaN 80.0 90.0
1 1 20.0 NaN NaN NaN
2 20 NaN NaN 100.0 30.0