按值范围将 Pandas DataFrame 复制到多个文件中
Copy Pandas DataFrame into multiple files by Value Range
我有一个 DataFrame,假设 3000x3000,int 值从 0 到 10,我想将它分解成类别并保存到单独的文件中。
例如,类别应该是 0-3、4-5、5-10。
因此我想获得 3 个形状相同但每个类别只有相关值的文件,并且这些值应保留在原始位置。
起初我想为每个类别复制 df 并使用 replace 删除所有不相关的值,但这听起来不对。
希望这不是很混乱。
df 示例:
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 7 0
2 0 0 2 3 0 0 0 0 6 7
3 0 0 2 3 0 0 0 0 9 6
4 0 0 0 1 0 0 5 4 8 7
5 0 0 0 0 0 0 5 4 0 0
6 0 0 0 0 0 0 4 5 0 0
7 0 0 0 0 0 0 4 4 0 0
8 0 0 0 0 0 0 0 4 0 0
9 0 0 0 0 0 0 0 0 0 0
结果我想要 3 个数据帧:
cat1:
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
2 0 0 2 3 0 0 0 0 0 0
3 0 0 2 3 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
cat2:
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 5 4 0 0
5 0 0 0 0 0 0 5 4 0 0
6 0 0 0 0 0 0 4 5 0 0
7 0 0 0 0 0 0 4 4 0 0
8 0 0 0 0 0 0 0 4 0 0
9 0 0 0 0 0 0 0 0 0 0
cat3:
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 7 0
2 0 0 0 0 0 0 0 0 6 7
3 0 0 0 0 0 0 0 0 9 6
4 0 0 0 0 0 0 0 0 8 7
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
你想要where
df1 = df.where((df > 0) & (df <=3), 0)
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
2 0 0 2 3 0 0 0 0 0 0
3 0 0 2 3 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
您可以为 df2 和 df3 编写类似的逻辑
我有一个 DataFrame,假设 3000x3000,int 值从 0 到 10,我想将它分解成类别并保存到单独的文件中。
例如,类别应该是 0-3、4-5、5-10。
因此我想获得 3 个形状相同但每个类别只有相关值的文件,并且这些值应保留在原始位置。
起初我想为每个类别复制 df 并使用 replace 删除所有不相关的值,但这听起来不对。
希望这不是很混乱。
df 示例:
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 7 0
2 0 0 2 3 0 0 0 0 6 7
3 0 0 2 3 0 0 0 0 9 6
4 0 0 0 1 0 0 5 4 8 7
5 0 0 0 0 0 0 5 4 0 0
6 0 0 0 0 0 0 4 5 0 0
7 0 0 0 0 0 0 4 4 0 0
8 0 0 0 0 0 0 0 4 0 0
9 0 0 0 0 0 0 0 0 0 0
结果我想要 3 个数据帧:
cat1:
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
2 0 0 2 3 0 0 0 0 0 0
3 0 0 2 3 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
cat2:
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 5 4 0 0
5 0 0 0 0 0 0 5 4 0 0
6 0 0 0 0 0 0 4 5 0 0
7 0 0 0 0 0 0 4 4 0 0
8 0 0 0 0 0 0 0 4 0 0
9 0 0 0 0 0 0 0 0 0 0
cat3:
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 7 0
2 0 0 0 0 0 0 0 0 6 7
3 0 0 0 0 0 0 0 0 9 6
4 0 0 0 0 0 0 0 0 8 7
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
你想要where
df1 = df.where((df > 0) & (df <=3), 0)
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
2 0 0 2 3 0 0 0 0 0 0
3 0 0 2 3 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
您可以为 df2 和 df3 编写类似的逻辑