按性别分组并计算高度列中的缺失值

Groupby gender and count missing values in height column

我有 table 如下所示,我需要仅为缺少高度的行查找性别列的值计数。

Age  Gender  Height  Weight NonAlcoholicDrink AlcoholicDrink
0  19.0    Male     NaN     NaN            Coffee            NaN
1   NaN  Female   64.50  128.70             Water         Liquor
2  21.0    Male   71.47  182.95            Coffee           Beer
3  32.0  Female   57.30  103.40         Green Tea           Wine
4  32.0  Female   53.80  138.40         Black Tea         Liquor
5  20.0    Male   73.38  204.59             Pepsi            NaN
6  20.0    Male   70.46  225.25            Coffee            NaN
7  32.0  Female   54.10  157.80         Black Tea         Liquor
8  49.0  Female   64.80  152.60          Gatorade           Beer
9  45.0    Male     NaN  196.55            Coffee         Liquor

我该怎么办?

获得答案的一种方法是创建一个新的数据框,其中高度值为 np.nan(上面的示例中有 2 个),方法是:

missing_height = df[df['Height'].isnull()]

然后你可以使用新的数据框,做一个value_counts(),得到你需要的:

missing_height['Gender'].value_counts(ascending=False)

这将为您提供所需的东西。