为什么 sklearn 和 numpy 不同意 PCA 的乘法分量?

Why does sklearn and numpy disagree about multiplying component of PCA?

from sklearn.datasets import make_blobs
from sklearn.decomposition import PCA

SEED = 123
X, y = make_blobs(n_samples=1000, n_features=5000, cluster_std=90., random_state=SEED)
pca = PCA(2)
pca.fit(X)
pca1, pca2 = pca.components_

pcaX = pca.transform(X)
pcaXnp = np.array([X @ pca1, X @ pca2]).T

如果您打印出 pcaX 和 pcaXnp,您会发现它们很相似,但彼此不一致。为什么这些不同?似乎“.components_”应该 return sklearn 将矩阵乘以什么,是否有理由说明它只是乘法的近似值?

sklearn.decomposition 中的 PCA 使用奇异值分解或 SVD 来获取主成分。这仅在列首先 centered by their means. If you check the source code 时有效,它们在 SVD 之前进行居中:

def _fit_full(self, X, n_components):
[...]
        # Center data
        self.mean_ = np.mean(X, axis=0)
        X -= self.mean_

因此,要获得 PCA 分数,您需要先将矩阵居中:

pcaX = pca.transform(X)
Xc = X - X.mean(axis=0)
pcaXnp = np.array([Xc @ pca1, Xc @ pca2]).T

pcaX[:3]
array([[-101.45177987,  212.45583745],
       [ 520.84541298,   87.32254399],
       [-273.26407231, -318.78493994]])

pcaXnp[:3]
array([[-101.45177987,  212.45583745],
       [ 520.84541298,   87.32254399],
       [-273.26407231, -318.78493994]])