如何计算Python中两个数据帧列表中所有对应元素的均值和标准差?
How to compute the mean and standard deviation of all the corresponding elements in the list of two dataframes in Python?
我有一个包含两个数据框的列表,比如 df1 和 df2。下面给出df1和df2,
df1 = and df2 =
此外,listOfDataframe = [df1,df2]
df1和df2可以生成如下,
df1 = pd.DataFrame(np.array([[99,85,93], [89,97,94], [80,95,89]]), index=["A", "B", "C"], columns = ["Sensetivity", "specificity", "Accuracy"])
df2 = pd.DataFrame(np.array([[85,99,50], [97,89,75], [95,80,60]]), index=["A", "B", "C"], columns = ["Sensetivity", "specificity", "Accuracy"])
现在,我想计算位于列表 listOfDataframe
中的两个数据框中相应元素的均值和标准差。我们如何以简单的方式做到这一点?我想要一个单一的输出数据框如下,
输出=
提前致谢!
让我们试试:
listOfDataframe = [df1,df2]
stats = (pd.concat(listOfDataframe).groupby(level=0).agg(['mean','std'])
.swaplevel(0,1,axis=1)
.round(0).astype(str) # modify this as you wish
)
out = stats['mean'] + '±' + stats['std']
输出:
Sensetivity specificity Accuracy
A 92.0±10.0 92.0±10.0 72.0±30.0
B 93.0±6.0 93.0±6.0 84.0±13.0
C 88.0±11.0 88.0±11.0 74.0±21.0
我有一个包含两个数据框的列表,比如 df1 和 df2。下面给出df1和df2,
df1 =
此外,listOfDataframe = [df1,df2]
df1和df2可以生成如下,
df1 = pd.DataFrame(np.array([[99,85,93], [89,97,94], [80,95,89]]), index=["A", "B", "C"], columns = ["Sensetivity", "specificity", "Accuracy"])
df2 = pd.DataFrame(np.array([[85,99,50], [97,89,75], [95,80,60]]), index=["A", "B", "C"], columns = ["Sensetivity", "specificity", "Accuracy"])
现在,我想计算位于列表 listOfDataframe
中的两个数据框中相应元素的均值和标准差。我们如何以简单的方式做到这一点?我想要一个单一的输出数据框如下,
输出=
提前致谢!
让我们试试:
listOfDataframe = [df1,df2]
stats = (pd.concat(listOfDataframe).groupby(level=0).agg(['mean','std'])
.swaplevel(0,1,axis=1)
.round(0).astype(str) # modify this as you wish
)
out = stats['mean'] + '±' + stats['std']
输出:
Sensetivity specificity Accuracy
A 92.0±10.0 92.0±10.0 72.0±30.0
B 93.0±6.0 93.0±6.0 84.0±13.0
C 88.0±11.0 88.0±11.0 74.0±21.0