将数组值分配给 NaN Dataframe Pandas
Assign array values to NaN Dataframe Pandas
我正在尝试用从数组中获取的相同数量的值填充最初具有 NaN 值的数据框。字典 leagueList
(NFL、NBA 等)中的所有值都是单独的数据帧。
抱歉,我无法将它们放在这里,因为 post 会变得太长。
下面循环背后的想法是获取数据框中所有联赛之间的一系列配对 t 检验 (p_value),并根据名为 'win_loss_ratio'
的列进行比较。
应使用与空数据框中的值数量相同的结果数组来替换数据框中的 NaN 值,但我坚持这部分。如何实现?
leagueList={'NFL':NFL,'NBA':NBA,'NHL':NHL,'MLB':MLB}
df = pd.DataFrame(columns = leagueList, index = leagueList)
print(df)
NFL NBA NHL MLB
NFL NaN NaN NaN NaN
NBA NaN NaN NaN NaN
NHL NaN NaN NaN NaN
MLB NaN NaN NaN NaN
#Double loop for making all possible league combinations
for a in leagueList.values():
for b in leagueList.values():
df_comb=pd.merge(a,b,left_index=True,right_index=True,how='inner')
teststat,p_value=stats.ttest_rel(df_comb[['win_loss_ratio_x']],df_comb[['win_loss_ratio_y']])
print(p_value)
[nan]
[0.94179205]
[0.03088317]
[0.80206949]
[0.94179205]
[nan]
[0.02229705]
[0.95053998]
[0.03088317]
[0.02229705]
[nan]
[0.00070784]
[0.80206949]
[0.95053998]
[0.00070784]
[nan]
将 p 值放入列表中以使用 .fillna
,或者直接构建它:
import pandas as pd
from scipy import stats
#some sample data
NFL = pd.DataFrame([.5,.6,.7], columns=['win_loss_ratio'])
NBA = pd.DataFrame([.7,.5,.3], columns=['win_loss_ratio'])
NHL = pd.DataFrame([.4,.3,.2], columns=['win_loss_ratio'])
MLB = pd.DataFrame([.9,.8,.9], columns=['win_loss_ratio'])
leagueList={'NFL':NFL,'NBA':NBA,'NHL':NHL,'MLB':MLB}
#Double loop for making all possible league combinations
rows = []
for a in leagueList.values():
for b in leagueList.values():
df_comb=pd.merge(a,b,left_index=True,right_index=True,how='inner')
teststat,p_value=stats.ttest_rel(df_comb[['win_loss_ratio_x']],df_comb[['win_loss_ratio_y']])
rows.append(p_value[0])
n=len(leagueList)
data = [rows[i * n:(i + 1) * n] for i in range((len(rows) + n - 1) // n )]
df = pd.DataFrame(data, columns = leagueList, index = leagueList)
输出:
print (df.to_string())
NFL NBA NHL MLB
NFL NaN 0.622036 0.12169 0.057191
NBA 0.622036 NaN 0.07418 0.092735
NHL 0.121690 0.074180 NaN 0.013560
MLB 0.057191 0.092735 0.01356 NaN
我正在尝试用从数组中获取的相同数量的值填充最初具有 NaN 值的数据框。字典 leagueList
(NFL、NBA 等)中的所有值都是单独的数据帧。
抱歉,我无法将它们放在这里,因为 post 会变得太长。
下面循环背后的想法是获取数据框中所有联赛之间的一系列配对 t 检验 (p_value),并根据名为 'win_loss_ratio'
的列进行比较。
应使用与空数据框中的值数量相同的结果数组来替换数据框中的 NaN 值,但我坚持这部分。如何实现?
leagueList={'NFL':NFL,'NBA':NBA,'NHL':NHL,'MLB':MLB}
df = pd.DataFrame(columns = leagueList, index = leagueList)
print(df)
NFL NBA NHL MLB
NFL NaN NaN NaN NaN
NBA NaN NaN NaN NaN
NHL NaN NaN NaN NaN
MLB NaN NaN NaN NaN
#Double loop for making all possible league combinations
for a in leagueList.values():
for b in leagueList.values():
df_comb=pd.merge(a,b,left_index=True,right_index=True,how='inner')
teststat,p_value=stats.ttest_rel(df_comb[['win_loss_ratio_x']],df_comb[['win_loss_ratio_y']])
print(p_value)
[nan]
[0.94179205]
[0.03088317]
[0.80206949]
[0.94179205]
[nan]
[0.02229705]
[0.95053998]
[0.03088317]
[0.02229705]
[nan]
[0.00070784]
[0.80206949]
[0.95053998]
[0.00070784]
[nan]
将 p 值放入列表中以使用 .fillna
,或者直接构建它:
import pandas as pd
from scipy import stats
#some sample data
NFL = pd.DataFrame([.5,.6,.7], columns=['win_loss_ratio'])
NBA = pd.DataFrame([.7,.5,.3], columns=['win_loss_ratio'])
NHL = pd.DataFrame([.4,.3,.2], columns=['win_loss_ratio'])
MLB = pd.DataFrame([.9,.8,.9], columns=['win_loss_ratio'])
leagueList={'NFL':NFL,'NBA':NBA,'NHL':NHL,'MLB':MLB}
#Double loop for making all possible league combinations
rows = []
for a in leagueList.values():
for b in leagueList.values():
df_comb=pd.merge(a,b,left_index=True,right_index=True,how='inner')
teststat,p_value=stats.ttest_rel(df_comb[['win_loss_ratio_x']],df_comb[['win_loss_ratio_y']])
rows.append(p_value[0])
n=len(leagueList)
data = [rows[i * n:(i + 1) * n] for i in range((len(rows) + n - 1) // n )]
df = pd.DataFrame(data, columns = leagueList, index = leagueList)
输出:
print (df.to_string())
NFL NBA NHL MLB
NFL NaN 0.622036 0.12169 0.057191
NBA 0.622036 NaN 0.07418 0.092735
NHL 0.121690 0.074180 NaN 0.013560
MLB 0.057191 0.092735 0.01356 NaN