pandas: return 一个列表列中的值基于另一个列表列中的条件

pandas: return a value from a list column based on a condition in another list column

我有一个类似于以下列表列的大型数据框,但行和列更多:

import pandas as pd

data = {'First':  [['First', 'value'],['second','value'],['third','value','is'],['fourth','value','is']],
'Second': [['adj','noun'],['adj','noun'],['adj','noun','verb'],['adj','noun','verb']]}

df = pd.DataFrame (data, columns = ['First','Second'])

我想 return 第一列中的值,如果它等于第二列中的条件。所以我喜欢的是第三列,如果第二列中的值等于 'adj'.

,则如下所示

所需的第三列:

third column:
first
second
third
fourth

由于我的数据集很大,我至少尝试过过滤包含值 'adj' 的行的数据集,但不知道如何继续:

df[['First','Second']][df['Second'].map(set(['adj']).issubset)]

如果每个列表中始终存在 adj,则通过 .index 和 select 从第二个列表中获取索引:

df['new'] = [a[b.index('adj')] for a, b in df[['First','Second']].to_numpy()]

如果不存在则更通用adj

df['new'] = [a[b.index('adj')] if 'adj' in b else None 
              for a, b in df[['First','Second']].to_numpy()]

替代 apply

f = lambda x: x['First'][x['Second'].index('adj')] if 'adj' in x['Second'] else None
df['new'] = df.apply(f, axis=1)


print (df)
                 First             Second     new
0       [First, value]        [adj, noun]   First
1      [second, value]        [adj, noun]  second
2   [third, value, is]  [adj, noun, verb]   third
3  [fourth, value, is]  [adj, noun, verb]  fourth