为 pandas 数据帧的每一行创建一个包含最大频率值列表的新列
Create new column with a list of max frequency values for each row of a pandas dataframe
鉴于此数据框:
df2 = pd.DataFrame([[3,3,3,3,3,3,5,5,5,5],[2,2,2,2,8,8,8,8,6,6]], columns=list('ABCDEFGHIJ'))
A B C D E F G H I J
0 3 3 3 3 3 3 5 5 5 5
1 2 2 2 2 8 8 8 8 6 6
我创建了 2 个新闻栏,每行给出 max_freq 和 max_freq_value:
df2["max_freq_val"] = df2.apply(lambda x: x.mode().agg(list), axis=1)
df2["max_freq"] = df2.loc[:, df2.columns != "max_freq_val"].apply(lambda x: x.value_counts().max(), axis=1)
A B C D E F G H I J max_freq_val max_freq
0 3 3 3 3 3 3 5 5 5 5 [3] 6
1 2 2 2 2 8 8 8 8 6 6 [2, 8] 4
编辑:我根据 @rhug123.
给出的答案编辑了我的代码
感谢大家的回答。
我们可以尝试 stack
然后用 agg
调整频率,将倍数放入 list
s = df2.stack().groupby(level=0).value_counts()
s = s[s.eq(s.max(level=0),level=0)].reset_index(level=1).groupby(level=0).agg(val= ('level_1',list),fre=(0,'first'))
df2 = df2.join(s)
df2
Out[156]:
A B C D E F G H I J val fre
0 3 3 3 3 3 3 5 5 5 5 [3] 6
1 2 2 2 2 8 8 8 8 6 6 [2, 8] 4
也许你可以使用这个功能:
def give_back_maximums(a = [2,2,2,2,8,8,8,8,6,6]):
values, counts = np.unique(a, return_counts=True)
return values[counts >= counts.max()].tolist()
以下顺序可能会影响结果
df2["max_freq_value"] = df2.apply(lambda x: give_back_maximums(x), axis=1)
df2["max_freq"] = df2.apply(lambda x: x.value_counts().max(), axis=1)
print(df2)
A B C D E F G H I J max_freq_value max_freq
0 3 3 3 3 3 3 5 5 5 5 [3] 6
1 2 2 2 2 8 8 8 8 6 6 [2, 8] 4
希望对您有所帮助:)
试试这个,它使用 mode()
df2.assign(max_freq=pd.Series(df2.mode(axis=1).stack().groupby(level=0).agg(list)),
max_freq_value = df2.eq(df2.mode(axis=1)[0].squeeze(),axis=0).sum(axis=1))
鉴于此数据框:
df2 = pd.DataFrame([[3,3,3,3,3,3,5,5,5,5],[2,2,2,2,8,8,8,8,6,6]], columns=list('ABCDEFGHIJ'))
A B C D E F G H I J
0 3 3 3 3 3 3 5 5 5 5
1 2 2 2 2 8 8 8 8 6 6
我创建了 2 个新闻栏,每行给出 max_freq 和 max_freq_value:
df2["max_freq_val"] = df2.apply(lambda x: x.mode().agg(list), axis=1)
df2["max_freq"] = df2.loc[:, df2.columns != "max_freq_val"].apply(lambda x: x.value_counts().max(), axis=1)
A B C D E F G H I J max_freq_val max_freq
0 3 3 3 3 3 3 5 5 5 5 [3] 6
1 2 2 2 2 8 8 8 8 6 6 [2, 8] 4
编辑:我根据 @rhug123.
给出的答案编辑了我的代码感谢大家的回答。
我们可以尝试 stack
然后用 agg
调整频率,将倍数放入 list
s = df2.stack().groupby(level=0).value_counts()
s = s[s.eq(s.max(level=0),level=0)].reset_index(level=1).groupby(level=0).agg(val= ('level_1',list),fre=(0,'first'))
df2 = df2.join(s)
df2
Out[156]:
A B C D E F G H I J val fre
0 3 3 3 3 3 3 5 5 5 5 [3] 6
1 2 2 2 2 8 8 8 8 6 6 [2, 8] 4
也许你可以使用这个功能:
def give_back_maximums(a = [2,2,2,2,8,8,8,8,6,6]):
values, counts = np.unique(a, return_counts=True)
return values[counts >= counts.max()].tolist()
以下顺序可能会影响结果
df2["max_freq_value"] = df2.apply(lambda x: give_back_maximums(x), axis=1)
df2["max_freq"] = df2.apply(lambda x: x.value_counts().max(), axis=1)
print(df2)
A B C D E F G H I J max_freq_value max_freq
0 3 3 3 3 3 3 5 5 5 5 [3] 6
1 2 2 2 2 8 8 8 8 6 6 [2, 8] 4
希望对您有所帮助:)
试试这个,它使用 mode()
df2.assign(max_freq=pd.Series(df2.mode(axis=1).stack().groupby(level=0).agg(list)),
max_freq_value = df2.eq(df2.mode(axis=1)[0].squeeze(),axis=0).sum(axis=1))