Prolog组合练习

Prolog combinatorial exercise

我想为以下问题编写一个 Prolog 程序: 从集合 X = {1 ... 24} 中确定 8 个数字 y1..y8 ,这样对于每个 n,0 < n < 24 有两个数字 yi 和 yj,其中 n = yi - yj,yi > yj.

到目前为止,我尝试了以下方法:

gen(A, B, C, D, E, F, G, H) :-
   permutation([A, B, C, D, E, F, G, H, _, _, _,     
_, _, _, _, _, _, _, _, _, _, _, _, _],
      [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]). 

distance(D, L) :-
   random_member(X, L),
   random_member(Y, L),
   X - Y =:= D.

solution(A, B, C, D, E, F, G, H) :-
   gen(A, B, C, D, E, F, G, H),
   distance(1, [A, B, C, D, E, F, G, H]),
   distance(2, [A, B, C, D, E, F, G, H]),
   distance(3, [A, B, C, D, E, F, G, H]),
   distance(4, [A, B, C, D, E, F, G, H]),
   distance(5, [A, B, C, D, E, F, G, H]),
   distance(6, [A, B, C, D, E, F, G, H]),
   distance(7, [A, B, C, D, E, F, G, H]),
   distance(8, [A, B, C, D, E, F, G, H]),
   distance(9, [A, B, C, D, E, F, G, H]),
   distance(10, [A, B, C, D, E, F, G, H]),
   distance(11, [A, B, C, D, E, F, G, H]),
   distance(12, [A, B, C, D, E, F, G, H]),
   distance(13, [A, B, C, D, E, F, G, H]),
   distance(14, [A, B, C, D, E, F, G, H]),
   distance(15, [A, B, C, D, E, F, G, H]),
   distance(16, [A, B, C, D, E, F, G, H]),
   distance(17, [A, B, C, D, E, F, G, H]),
   distance(18, [A, B, C, D, E, F, G, H]),
   distance(19, [A, B, C, D, E, F, G, H]),
   distance(20, [A, B, C, D, E, F, G, H]),
   distance(21, [A, B, C, D, E, F, G, H]),
   distance(22, [A, B, C, D, E, F, G, H]),
   distance(23, [A, B, C, D, E, F, G, H]),
   distance(24, [A, B, C, D, E, F, G, H]).

有人可以帮我吗?

我更改了您的 gen/1 谓词,因为您编写它的方式会产生大量重复解决方案的回溯。这样一来,回溯的速度会更快,效率也会更高。

我也用了一个列表来表示你的解决方案(少写变量名)。

最后,我用 forall/2 而不是写 22 次(几乎)同样的东西。

gen([X|Xs],Min,Max,Length) :-
    Length>0,
    between(Min,Max,X),
    Min1 is X+1,
    Length1 is Length-1,
    gen(Xs,Min1,Max,Length1).
gen([],_,_,0).

gen(X) :- gen(X,1,24,8).

distance(D,L) :-
    member(Y1,L),
    member(Y2,L),
    D =:= Y1 - Y2,
    Y1 > Y2.

solution(X) :-
    gen(X),
    forall(between(2,23,D), once(distance(D,X))).

结果:(用鼠标怎么看)

有 4 种解决方案(我考虑了您评论中的更正,因此 1 < N < 24
?-解决方案(X)。
X = [1, 2, 3, 12, 16, 19, 22, 24] ;
X = [1, 2, 5, 11, 17, 19, 22, 24] ;
X = [1, 3, 6, 8, 14, 20, 23, 24] ;
X = [1, 3, 6, 9, 13, 22, 23, 24] ;
假的。