中位数算法的中位数不能始终如一地工作

Median of Medians algorithm not working consistently

我已经实现了 select/median 中位数算法,使用以下作为参考 http://www.ics.uci.edu/~eppstein/161/960130.html (this has previously been linked here Median of Medians in Java)。

我的代码似乎适用于小型数组 (~100),甚至适用于大小为 100001 的数组 http://pastebin.com/mwRc4Hig (answer 5008), but then fails on an input array of size 10001 http://pastebin.com/YwVBmgDk(答案 4960,我的代码输出 4958)。

请注意,以上文本的正确答案相当于对数组进行排序并返回数组[array.length / 2]处的元素,无论数组大小是偶数还是奇数。

我不确定如何调试这个问题。该功能似乎是任意的,我只是迷路了。下面是我的代码:

public class MedianOfMedians {

public static void main(String[] args) {
    MedianOfMedians mds = new MedianOfMedians();
    mds.run();
}

private void run() {
    Scanner in = new Scanner(System.in);
    int n = in.nextInt();
    int[] numArray = new int[n];
    for (int i = 0; i < n; i++) {
        numArray[i] = in.nextInt();
    }
    int median = select(numArray, numArray.length / 2);
    System.out.print(median);
}

private int select(int[] numArray, int k) {
    if (numArray.length <= 10) {
        int[] sorted = insertionSort(numArray);
        return sorted[k];
    }

    int divCount = (numArray.length % 5 == 0) ? numArray.length / 5 - 1 : numArray.length / 5;
    int[] medOfMed = new int[divCount + 1];
    int counter = 0;
    int[] subArray;

    while (counter <= divCount) {
        subArray = splitByFive(counter, divCount, numArray);
        medOfMed[counter] = select(subArray, subArray.length / 2);
        counter++;
    }

    int M = select(medOfMed, numArray.length / 10);

    List<Integer> lt = new ArrayList<>();
    List<Integer> eq = new ArrayList<>();
    List<Integer> gt = new ArrayList<>();
    for (int i : numArray) {
        if (i < M) {
            lt.add(i);
        } else if (i == M) {
            eq.add(i);
        } else {
            gt.add(i);
        }
    }
    if (k < lt.size()) {
        return select(createArray(lt), k);
    } else if (k > lt.size() + eq.size()) {
        return select(createArray(gt), k - lt.size() - eq.size());
    } else {
        return M;
    }
}

private int[] splitByFive(int splitIter, int divisions, int[] toSplit) {
    int numToCopy;
    if (splitIter == divisions) {
        numToCopy = toSplit.length - (5 * splitIter);
    } else {
        numToCopy = 5;
    }
    int[] subArray = new int[numToCopy];
    System.arraycopy(toSplit, splitIter * 5, subArray, 0, numToCopy);
    return subArray;
}

private int[] createArray(List<Integer> list) {
    int[] result = new int[list.size()];
    for (int i = 0; i < list.size(); i++) {
        result[i] = list.get(i);
    }
    return result;
}

private int[] insertionSort(int[] numArray) {
    for (int i = 1; i < numArray.length; i++) {
        int j = i;
        while (j - 1 >= 0 && numArray[j] < numArray[j - 1]) {
            int temp = numArray[j];
            numArray[j] = numArray[j - 1];
            numArray[j - 1] = temp;
            j--;
        }
    }
    return numArray;
}
}

我没有时间调试你的代码,但也许我可以提供一种调试技术供你自己尝试,这对像这样的递归算法很有用。

如果存在算法失败的输入(正如您所发现的那样),则存在最小的此类输入——并且此输入越小,就越容易找出问题所在。因为算法是递归的,所以你有一个很好的方法来隔离第一个出错的地方:你可以测试你即将从 select() return 得到的结果是否正确(使用一个缓慢的,可信的方法,例如将数据复制到临时缓冲区,对其进行排序,然后获取中间元素)只是在return值之前。如果您重新安排函数以仅使用单个 return 语句,则这样做会容易得多,例如:

private int select(int[] numArray, int k) {
    int knownCorrectAnswer = selectSlowlyButDefinitelyCorrectly(numArray, k);
    int willReturn;
    if (numArray.length <= 10) {
        int[] sorted = insertionSort(numArray);
        willReturn = sorted[k];    // Just remember what we will return
    } else {    // Need to add else branch here now

        ...

        if (k < lt.size()) {
            willReturn = select(createArray(lt), k);
        } else if (k > lt.size() + eq.size()) {
            willReturn = select(createArray(gt), k - lt.size() - eq.size());
        } else {
            willReturn = M;
        }
    }    // End of inserted else branch

    if (willReturn == knownCorrectAnswer) {
        return willReturn;
    } else {
        yell("First problem occurs with numArray=<...> and k=<...>!");
    }
}

yell() 应该打印出整个问题实例并停止程序(例如通过抛出异常)。这个设置的好处是你知道当 yell() 被调用时,每个已经完成的对 select() 的调用都是正确的——因为如果它不是't, yell() 已经被调用并且程序会在此之前停止。因此 yell() 产生的输出保证是出现问题的 第一个 (不一定是最小的,但通常也是最小的)子问题。