根据 pandas 中另一列的值对列执行操作

Perform operation on columns based on values of another columns in pandas

我有一个数据框

df = pd.DataFrame([["A",1,98,88,"",567,453,545,656,323,756], ["B",1,99,"","",231,232,234,943,474,345], ["C",1,97,67,23,543,458,456,876,935,876], ["B",1,"",79,84,895,237,678,452,545,453], ["A",1,45,"",58,334,778,234,983,858,657], ["C",1,23,55,"",183,565,953,565,234,234]], columns=["id","date","col1","col2","col3","col1_num","col1_deno","col3_num","col3_deno","col2_num","col2_deno"])

我需要为列名的相应 _num 和 _deno 设置 Nan/blank 值。例如:如果 "col1_num""col1_deno" 的特定行 Nan/blank =21=]"col1" 为空白。基于 "col2" 对 "col2_num""col2_deno" 重复相同的过程,以及 "col3_num""col3_deno" 基于 “col3”.

预期输出:

df_out = pd.DataFrame([["A",1,98,88,"",567,453,"","",323,756], ["B",1,99,"","",231,232,"","","",""], ["C",1,97,67,23,543,458,456,876,935,876], ["B",1,"",79,84,"","",678,452,545,453], ["A",1,45,"",58,334,778,234,983,"",""], ["C",1,23,55,"",183,565,"","",234,234]], columns=["id","date","col1","col2","col3","col1_num","col1_deno","col3_num","col3_deno","col2_num","col2_deno"])

怎么做?

让我们尝试使用 布尔掩码:

# select the columns
c = pd.Index(['col1', 'col2', 'col3'])

# create boolean mask
m = df[c].eq('').to_numpy()

# mask the values in `_num` and `_deno` like columns
df[c + '_num'] = df[c + '_num'].mask(m, '')
df[c + '_deno'] = df[c + '_deno'].mask(m, '')

>>> df

  id  date col1 col2 col3 col1_num col1_deno col3_num col3_deno col2_num col2_deno
0  A     1   98   88           567       453                         323       756
1  B     1   99                231       232                                      
2  C     1   97   67   23      543       458      456       876      935       876
3  B     1        79   84                         678       452      545       453
4  A     1   45        58      334       778      234       983                   
5  C     1   23   55           183       565                         234       234

@shubham 的回答简单明了,我相信也更快;这只是一个选项,您可能无法(或不想)列出所有列

获取需要更改的列的列表:

cols = [col for col in df if col.startswith('col')]

['col1',
 'col2',
 'col3',
 'col1_num',
 'col1_deno',
 'col3_num',
 'col3_deno',
 'col2_num',
 'col2_deno']

创建一个字典,将 col1 与要更改的列配对,col2 也是如此,依此类推:

from collections import defaultdict
d = defaultdict(list)

for col in cols:
    if "_" in col:
        d[col.split("_")[0]].append(col)

d

defaultdict(list,
            {'col1': ['col1_num', 'col1_deno'],
             'col3': ['col3_num', 'col3_deno'],
             'col2': ['col2_num', 'col2_deno']})

遍历字典以分配新值:

for key, val in d.items():
    df.loc[df[key].eq(""), val] = ""




 id  date col1 col2 col3 col1_num col1_deno col3_num col3_deno col2_num col2_deno
0  A     1   98   88           567       453                         323       756
1  B     1   99                231       232                                      
2  C     1   97   67   23      543       458      456       876      935       876
3  B     1        79   84                         678       452      545       453
4  A     1   45        58      334       778      234       983                   
5  C     1   23   55           183       565                         234       234

MultiIndex 的解决方案:

#first convert not processing and testing columns to index
df1 = df.set_index(['id','date'])
cols = df1.columns
#split columns by _ for MultiIndex
df1.columns = df1.columns.str.split('_', expand=True)

#compare columns without _ (with NaN in second level) by empty string
m = df1.xs(np.nan, axis=1, level=1).eq('')
#create mask by all columns
mask = m.reindex(df1.columns, axis=1, level=0)
#set new values by mask, overwrite columns names
df1 = df1.mask(mask, '').set_axis(cols, axis=1).reset_index()
print (df1)
  id  date col1 col2 col3 col1_num col1_deno col3_num col3_deno col2_num  \
0  A     1   98   88           567       453                         323   
1  B     1   99                231       232                               
2  C     1   97   67   23      543       458      456       876      935   
3  B     1        79   84                         678       452      545   
4  A     1   45        58      334       778      234       983            
5  C     1   23   55           183       565                         234   

  col2_deno  
0       756  
1            
2       876  
3       453  
4            
5       234