如何从 Python 中的此数据集中找到最大值或最小值?

How do I find the Max or Min value from this dataset in Python?

我正在使用全球预期寿命的在线数据集,我正在尝试在 life_expectancy 列中找到最大值和最小值。

这是数据集:https://ourworldindata.org/spanish-flu-largest-influenza-pandemic-in-history

这是我按照其他帖子中的建议尝试数学方程式和 max() 和 min() 后得到的结果。

with open('data/life-expectancy.csv') as life_expectancy:
    next(life_expectancy)
    for data in life_expectancy:
        clean_data = data.strip()
        split_data = clean_data.split(',')

        entity = split_data[0]
        code = split_data[1]
        year = split_data[2]
        expectancy = float(split_data[3])
              
print(f'The overall max life expectancy is: {max(split_data[3])}')
print(f'The overall min life expectancy is: {min(split_data[3])}')

我还应该添加什么才能真正获得正确的结果?

当前输出:

The overall max life expectancy is: 9
The overall min life expectancy is: .

您想创建在循环时建立起来的列表,然后在 min/max 之后。

with open('data/life-expectancy.csv') as life_expectancy:
    next(life_expectancy)

    entities = []
    codes = []
    years = []
    expectancies = []
    for data in life_expectancy:
        clean_data = data.strip()
        split_data = clean_data.split(',')

        entities.append(split_data[0])
        codes.append(split_data[1])
        years.append(split_data[2])
        expectancies.append(float(split_data[3]))
              
print(f'The overall max life expectancy is: {max(expectancies)}')
print(f'The overall min life expectancy is: {min(expectancies)}')

您没有对正在迭代的数据执行任何操作。

当您将数据存储在列表中时,我们可以在数据集上使用 minmax。使用键和 lambda 我们可以确保我们的结果包括所有相关数据,而不是只存储最大值。

with open('life-expectancy.csv') as life_expectancy:
    next(life_expectancy)
    
    ## Create an empty list
    output = []
    
    for data in life_expectancy:
        clean_data = data.strip()
        split_data = clean_data.split(',')

        entity = split_data[0]
        code = split_data[1]
        year = split_data[2]
        expectancy = float(split_data[3])
      
        ## Append to the list
        output.append([entity, code, year, expectancy])

max_life = max(output, key=lambda x: x[3])
min_life = min(output, key=lambda x: x[3])

#['Monaco', 'MCO', '2019', 86.751]
#['Iceland', 'ISL', '1882', 17.76]

print(f'The overall max life expectancy is {max_life[3]} in {max_life[0]}')    
print(f'The overall min life expectancy is {min_life[3]} in {min_life[0]}')

#The overall max life expectancy is 86.751 in Monaco
#The overall min life expectancy is 17.76 in Iceland

为了提高可读性,您可以通过修改以下行将数据存储为`dicts 列表

output.append({'entity': entity, 'code': code, 'year': year, 'expectancy': expectancy})

max_life = max(output, key=lambda x: x['expectancy'])
min_life = min(output, key=lambda x: x['expectancy'])

print(f'The overall max life expectancy is {max_life["expectancy"]} in {max_life["entity"]}')
print(f'The overall min life expectancy is {min_life["expectancy"]} in {min_life["entity"]}')