以国家为中心的 geopandas 地图

geopandas map centering with countries

我正在 geopandas 上绘制前苏联的数据,它看起来确实不太好。

我尝试了早期在 , 上发布的这段代码,但没有添加任何帮助,因此我不仅需要地图,还需要将数据放在上面。因为我正在合并 'world'(实际上仅由前苏联国家组成)和冠状病毒数据“在 'Country'”,所以我需要该数据框与原始国家和调整后的多边形。

我的代码的关键点:

url = "https://opendata.arcgis.com/datasets/a21fdb46d23e4ef896f31475217cbb08_1.geojson"
world = gpd.read_file(url)
ex_ussr = ['Ukraine', 'Belarus', 'Kyrgyzstan', 'Azerbaijan', 'Tajikistan', 'Armenia', 'Georgia', 'Russia', 'Kazakhstan', 'Lithuania', 'Latvia', 'Estonia', 'Uzbekistan']
world = world[world['CNTRY_NAME'].isin(ex_ussr)]
df_world = pd.merge(df_covid, world, on='Country')
crs = {'init': 'epsg:4326'}
corona_gpd = gpd.GeoDataFrame(df_world, crs=crs, geometry='geometry')
f, ax = plt.subplots(1, 1, figsize=(30,5))
ax = corona_gpd.plot(column='New cases', cmap='rainbow', ax=ax, legend=True, legend_kwds={'label': 'New Cases by Country'})

这是一个具有挑战性的问题,我很乐意尝试。以下是一个 运行 可用代码,它将创建具有良好几何形状的 russia 地理数据框——在日期变更线上不会散开的几何形状。

import numpy as np
import matplotlib.pyplot as plt
import geopandas as gpd

#import cartopy.crs as ccrs
#import cartopy

from shapely.geometry import LineString, MultiPolygon, Polygon
from shapely.ops import split
from shapely.affinity import translate
import geopandas

def shift_geom(shift, gdataframe, plotQ=False):
    # this code is adapted from somewhere found in SO
    # *** will give credit here ***
    shift -= 180
    moved_map = []
    splitted_map = []
    border = LineString([(shift,90),(shift,-90)])

    for row in gdataframe["geometry"]:
        splitted_map.append(split(row, border))
    for element in splitted_map:
        items = list(element)
        for item in items:
            minx, miny, maxx, maxy = item.bounds
            if minx >= shift:
                moved_map.append(translate(item, xoff=-180-shift))
            else:
                moved_map.append(translate(item, xoff=180-shift))

    # got `moved_map` as the moved geometry            
    gdf = geopandas.GeoDataFrame({"geometry": moved_map})
    # can move back to original pos by rerun with -ve shift

    # can change crs here
    if plotQ:
        fig, ax = plt.subplots()
        gdf.plot(ax=ax)
        plt.show()

    return gdf


world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))
world = world[['name', 'continent', 'geometry', 'pop_est', 'gdp_md_est']]

ex_ussr = ['Ukraine', 'Belarus', 'Kyrgyzstan', 'Azerbaijan', 'Tajikistan', 'Armenia', \
           'Georgia', 'Kazakhstan', 'Lithuania', 'Latvia', 'Estonia', 'Uzbekistan']

# ex_ussr w/o russia
ex_ussr_gdf = world[world['name'].isin(ex_ussr)]
# russia only
russia = world[ world['name']=='Russia' ]

# manipulate russia's geometry
rus_shift_90 = shift_geom(90, russia, False)        # Do not plot
good_geom_rus = shift_geom(-90, rus_shift_90, True) # Plot it

# a plot of new geometry appears

# Create geodataframe with 1 row (Multi-polygon) using this geometry
newrus_gdf = geopandas.GeoDataFrame( { "name": ["Russia"] , "new_geometry": [good_geom_rus.geometry.unary_union]}, \
                             geometry="new_geometry", crs="EPSG:4326")
# Merge `russia` with `newrus_gdf` to get everything in 1 dataframe
russia_final = russia.merge(right=newrus_gdf , on="name")

# Set the `new_geometry` from `newrus_gdf` as the geometry
russia_final.set_geometry("new_geometry", drop=True, inplace=True)

# plot all ex_ussr together = `russia_final` + `ex_ussr_gdf`
rus_ax = russia_final.plot(color='brown')
ex_ussr_gdf.plot(ax=rus_ax, color="green", ec="black", lw=0.3, alpha=0.75)

编辑

要将 russia_final 添加到 ex_ussr_gdf 并绘制结果,运行 此代码:-

ex_ussr_gdf = ex_ussr_gdf.append(russia_final, ignore_index=True)
ex_ussr_gdf.plot(color="pink", ec="black", lw=0.3)