顺序 VGG16 模型,图形断开错误
Sequential VGG16 model, graph disconnected error
我有一个顶部带有 VGG16 的顺序模型。:
def rescale(x):
return x/65535.
base_model = tf.keras.applications.VGG16(
include_top=True, weights=None, input_tensor=None, input_shape=(224,224,1),
pooling=None, classes=102, classifier_activation='softmax')
model = tf.keras.Sequential([
tf.keras.Input(shape=(None, None, 1)),
tf.keras.layers.Lambda(rescale),
tf.keras.layers.experimental.preprocessing.Resizing(224, 224),
tf.keras.layers.experimental.preprocessing.RandomFlip(mode='horizontal_and_vertical', seed=42),
base_model
])
输出model.summary()
:
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lambda (Lambda) (None, None, None, 1) 0
_________________________________________________________________
resizing (Resizing) (None, 224, 224, 1) 0
_________________________________________________________________
random_flip (RandomFlip) (None, 224, 224, 1) 0
_________________________________________________________________
vgg16 (Functional) (None, 102) 134677286
=================================================================
Total params: 134,677,286
Trainable params: 134,677,286
Non-trainable params: 0
现在我想创建一个有两个输出的新模型:
vgg_model = model.layers[3]
last_conv_layer = vgg_model.get_layer('block5_conv3')
new_model = tf.keras.models.Model(inputs=[model.inputs], outputs=[last_conv_layer.output, model.output])
但是我得到这个错误:
ValueError: Graph disconnected: cannot obtain value for tensor Tensor("input_1_6:0", shape=(None, 224, 224, 1), dtype=float32) at layer "block1_conv1". The following previous layers were accessed without issue: []
我在这里错过了什么?
给定一个这种形式的拟合模型:
def rescale(x):
return x/65535.
base_model = tf.keras.applications.VGG16(
include_top=True, weights=None, input_tensor=None, input_shape=(224,224,1),
pooling=None, classes=102, classifier_activation='softmax')
model = tf.keras.Sequential([
tf.keras.Input(shape=(None, None, 1)),
tf.keras.layers.Lambda(rescale),
tf.keras.layers.experimental.preprocessing.Resizing(224, 224),
tf.keras.layers.experimental.preprocessing.RandomFlip(mode='horizontal_and_vertical', seed=42),
base_model
])
### model.fit(...)
您可以将 vgg 包装在一个模型中,该模型 returns 您需要的所有输出
new_model = Model(inputs=model.layers[3].input,
outputs=[model.layers[3].output,
model.layers[3].get_layer('block5_conv3').output])
inp = tf.keras.Input(shape=(None, None, 1))
x = tf.keras.layers.Lambda(rescale)(inp)
x = tf.keras.layers.experimental.preprocessing.Resizing(224, 224)(x)
outputs = new_model(x)
new_model = Model(inp, outputs)
new_model
的总结:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_49 (InputLayer) [(None, None, None, 1)] 0
_________________________________________________________________
lambda_25 (Lambda) (None, None, None, 1) 0
_________________________________________________________________
resizing_25 (Resizing) (None, 224, 224, 1) 0
_________________________________________________________________
functional_47 (Functional) [(None, 102), (None, 14, 134677286
=================================================================
Total params: 134,677,286
Trainable params: 134,677,286
Non-trainable params: 0
我有一个顶部带有 VGG16 的顺序模型。:
def rescale(x):
return x/65535.
base_model = tf.keras.applications.VGG16(
include_top=True, weights=None, input_tensor=None, input_shape=(224,224,1),
pooling=None, classes=102, classifier_activation='softmax')
model = tf.keras.Sequential([
tf.keras.Input(shape=(None, None, 1)),
tf.keras.layers.Lambda(rescale),
tf.keras.layers.experimental.preprocessing.Resizing(224, 224),
tf.keras.layers.experimental.preprocessing.RandomFlip(mode='horizontal_and_vertical', seed=42),
base_model
])
输出model.summary()
:
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lambda (Lambda) (None, None, None, 1) 0
_________________________________________________________________
resizing (Resizing) (None, 224, 224, 1) 0
_________________________________________________________________
random_flip (RandomFlip) (None, 224, 224, 1) 0
_________________________________________________________________
vgg16 (Functional) (None, 102) 134677286
=================================================================
Total params: 134,677,286
Trainable params: 134,677,286
Non-trainable params: 0
现在我想创建一个有两个输出的新模型:
vgg_model = model.layers[3]
last_conv_layer = vgg_model.get_layer('block5_conv3')
new_model = tf.keras.models.Model(inputs=[model.inputs], outputs=[last_conv_layer.output, model.output])
但是我得到这个错误:
ValueError: Graph disconnected: cannot obtain value for tensor Tensor("input_1_6:0", shape=(None, 224, 224, 1), dtype=float32) at layer "block1_conv1". The following previous layers were accessed without issue: []
我在这里错过了什么?
给定一个这种形式的拟合模型:
def rescale(x):
return x/65535.
base_model = tf.keras.applications.VGG16(
include_top=True, weights=None, input_tensor=None, input_shape=(224,224,1),
pooling=None, classes=102, classifier_activation='softmax')
model = tf.keras.Sequential([
tf.keras.Input(shape=(None, None, 1)),
tf.keras.layers.Lambda(rescale),
tf.keras.layers.experimental.preprocessing.Resizing(224, 224),
tf.keras.layers.experimental.preprocessing.RandomFlip(mode='horizontal_and_vertical', seed=42),
base_model
])
### model.fit(...)
您可以将 vgg 包装在一个模型中,该模型 returns 您需要的所有输出
new_model = Model(inputs=model.layers[3].input,
outputs=[model.layers[3].output,
model.layers[3].get_layer('block5_conv3').output])
inp = tf.keras.Input(shape=(None, None, 1))
x = tf.keras.layers.Lambda(rescale)(inp)
x = tf.keras.layers.experimental.preprocessing.Resizing(224, 224)(x)
outputs = new_model(x)
new_model = Model(inp, outputs)
new_model
的总结:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_49 (InputLayer) [(None, None, None, 1)] 0
_________________________________________________________________
lambda_25 (Lambda) (None, None, None, 1) 0
_________________________________________________________________
resizing_25 (Resizing) (None, 224, 224, 1) 0
_________________________________________________________________
functional_47 (Functional) [(None, 102), (None, 14, 134677286
=================================================================
Total params: 134,677,286
Trainable params: 134,677,286
Non-trainable params: 0