R中数据框的回归

Regression in data frame in R

嘿,我有以下测试数据:

test = data.frame(Date = c(as.Date("2010-10-10"), as.Date("2010-10-10"), as.Date("2010-12-10"), as.Date("2010-12-10")), Rate = c(0.1, 0.15, 0.16, 0.2), FCF = c(100,200,150,250))

现在我想按日期对数据进行分组,在每组中进行线性回归 FCF~Rate,然后在每组中执行这些回归以获得每个日期和比率的回归值。我有以下代码:

output = test %>% group_by(Date) %>% do(mod = lm(FCF ~ Rate, data = .))
output = test %>% left_join(output, by = "Date")
output = output %>% ungroup() %>% mutate(Value = predict(mod, newdata = Rate))

没有最后一行一切正常,因为 mod 不是模型而是列表,我无法进行预测。我应该改变什么?

编辑: 当我评估这段代码时:

  output = test %>% group_by(Date) %>%
  do(mod = lm(FCF ~ Rate, data = .))
  output = test %>% left_join(output, by = "Date")
  output = output %>% ungroup() 

我得到:

问题是如何使用 mod 列中的模型来计算 Rate 列中 Rates 的预测值。

这是一种方法

library(dplyr)
library(purrr)
test %>%
   nest_by(Date) %>% 
   mutate(mod = list(lm(FCF ~ Rate, data = data))) %>%
   ungroup %>%
   mutate(out = map2(data, mod, 
       ~ predict(.y, newdata = data.frame(Rate = .x$Rate))))

-输出

# A tibble: 2 x 4
#  Date                 data mod    out      
#  <date>     <list<tibble>> <list> <list>   
#1 2010-10-10        [2 × 2] <lm>   <dbl [2]>
#2 2010-12-10        [2 × 2] <lm>   <dbl [2]>

如果我们还需要 'Pred' 列

library(tidyr)
out <- test %>%
       nest_by(Date) %>% 
       mutate(mod = list(lm(FCF ~ Rate, data = data))) %>%
       ungroup %>% 
       mutate(data =  map2(data, mod, ~ .x %>%
                  mutate(Pred = predict(.y, newdata =  cur_data())))) %>%
       unnest(data)