使用 Pandas 计算一组计数的情况

Calculate a case when count in a group by using Pandas

我是使用 python 的漂亮初学者, 我试图在一个代码行中计算打开率比率(两个不同计数之间的比率)。 我的数据框是这样的:

   df = pd.DataFrame([
    (142, 1, 'open' , 'Mobile'),
    (144, 2, 'open' , 'Mobile'),
    (144, 1, 'delivered', 'Web'),
    (142, 1, 'delivered', 'Mobile'),
    (142, 2, 'delivered', 'Web'),
    (144, 1, 'open', 'Web'),
    (142, 2, 'open', 'Mobile')
], columns=['sent_mail_id', 'customer_id', 'event' , 'Tool_used'])

我想在使用 Pandas 按列 Tool_used 分组时计算打开率。 在 SQL 语言中是这样的:

  select 
  Tool_used ,  
  count(distinct case when event='open' then sent_mail_id end)/count(distinct case when 
  event='delivered' then sent_mail_id end)
  from df
  group by 1

请注意,我需要清楚地计算 sent_mail_id,因为需要唯一计数。 谢谢

看看这是否是您需要的,每组中有 open rate ratio 列:

df1 = ((df.loc[df['event'] == 'open'].groupby('Tool_used')['event'].count() 
       / 
       df.loc[df['event'] == 'delivered'].groupby('Tool_used')['event'].count())
       .to_frame(name='open rate ratio')
      ).reset_index()

结果:

print(df1)



  Tool_used  open rate ratio
0    Mobile              3.0
1       Web              0.5

使用crosstab, so then is necessary only divide columns open with delivered with Series.reset_index:

df1 = pd.crosstab(df['Tool_used'], df['event'])
print (df1)
event      delivered  open
Tool_used                 
Mobile             1     3
Web                2     1

df2 = df1['open'].div(df1['delivered']).reset_index(name='open rate ratio')
print (df2)
  Tool_used  open rate ratio
0    Mobile              3.0
1       Web              0.5

如果需要groupby比较和聚合sum,但我认为这更复杂:

a = (df['event'] == 'open').groupby(df['Tool_used']).sum()
b = (df['event'] == 'delivered').groupby(df['Tool_used']).sum()

df2 = a.div(b).reset_index(name='open rate ratio')
print (df2)
  Tool_used  open rate ratio
0    Mobile              3.0
1       Web              0.5

带有自定义函数的解决方案(大数据时性能较差):

def f(x):
    return (x == 'open').sum() / (x == 'delivered').sum()

df2 = df.groupby('Tool_used')['event'].agg(f).reset_index(name='open rate ratio')
print (df2)
  Tool_used  open rate ratio
0    Mobile              3.0
1       Web              0.5