确定逻辑程序

Definite Logic Program

目的是实现谓词noDupl/2

该谓词的第一个参数是要分析的列表,第二个参数是不重复的数字列表。

我无法理解下面的代码,当我编译它时,它给出了一条错误消息,指出 contained 是未定义的过程,但是作为提示,我们可以将其用作预定义谓词 containednotContained。我想我需要定义 containednotContained.

noDupl(XS, Res):-
   help( XS, [],Res).

help([],_,[]).
help([X|XS],Seen,[X|Res]):-
   notContained(X,XS),
   notContained(X,Seen), 
   help(XS, [X|Seen], Res).
help([X|XS],Seen,Res):-
   contained(X,Seen),
   help(XS, Seen, Res).
help([X|XS],Seen,Res):-
   contained(X,XS),
   help(XS, [X|Seen], Res).

谁能解释一下这个问题。

缺少的定义可能是:

contained(X,[X|_]).
contained(X,[E|Es]) :-
   dif(X, E),
   contained(X, Es).

notContained(_X, []).
notContained(X, [E|Es]) :-
   dif(X, E),
   notContained(X, Es).

(我喜欢称这些关系为 memberd/2non_member/2。)

您给出的定义扩展了关系,为目前考虑的元素增加了一个额外的参数。

要理解每个子句的含义,请按箭头方向从右到左阅读每个子句(:- 是 1970 年代 的 ASCII 化)。让我们来看第一个规则:

Provided, that X is not an element of XS, and
provided, that X is not an element of Seen, and
provided, that help(X, [X|Seen], Res) is true,


then also help([X|XS],Seen,[X|Res]) is true.

换句话说,如果X既不在已访问元素列表Seen中,也不在尚未访问的元素列表XS中,则它不具有重复项。

有点难以理解的是你给出的子句是否互斥 - 严格来说,这不是你关心的,只要你只对声明性属性感兴趣,但这是一个很好的避免这种冗余的想法。

这是一个案例,其中显示了这种冗余:

?- noDupl([a,a,a],U).
U = [] ;
U = [] ;
false.

理想情况下,系统会给出一个确定的答案:

?- noDupl([a,a,a], U).
U = [].

就个人而言,我不太喜欢把事情分成太多的情况。本质上,我们可以有两个:它是一个副本,它是 none.

可以提供一个正确的定义,并且对于确定性可能存在的情况仍然完全确定 - 例如当第一个参数是 "sufficiently instantiated"(其中包括一个基本列表)时。让我们看看这个方向是否有一些答案。

我已经为你注释了你的代码:

noDupl( XS , Res ) :- % Res is the [unique] set of element from the bag XS
  help( XS, [],Res)    % if invoking the helper succeeds.
  .                    %

help( []     , _    , []      ) .  % the empty list is unique.
help( [X|XS] , Seen , [X|Res] ) :- % A non-empty list is unique, if...
   notContained(X,XS),             % - its head (X) is not contained in its tail (XS), and
   notContained(X,Seen),           % - X has not already been seen, and
   help(XS, [X|Seen], Res).        % - the remainder of the list is unique.
help( [X|XS] , Seen , Res ) :-     % otherwise...
   contained(X,Seen) ,             % - if X has been seen,
   help(XS, Seen, Res).            % - we discard it and recurse down on the tail.
help([X|XS],Seen,Res):-            % otherwise...
   contained(X,XS),                % - if X is in the tail of the source list, 
   help(XS, [X|Seen], Res).        % - we discard it (but add it to 'seen').

您的 contained/2 和 notContained/2` 谓词可能定义为:

contained( X , [X|_]  ) :- ! .
contained( X , [Y|Ys] ) :- X \= Y , contained( X , Ys ) .

not_contained( _ , [] ) .
not_contained( X , [Y|Ys] ) :- X \= Y , not_contained(X,Ys) .

现在,我可能在您的代码中遗漏了一些东西,但其中有很多冗余。你可以简单地写这样的东西(使用内置的 member/2reverse/2):

no_dupes( List , Unique ) :- no_dupes( Bag , [] , Set ) .

no_dupes( [] , V , S ) .      % if we've exhausted the bag, the list of visited items is our set (in reverse order of the source)
  reverse(V,S)                % - reverset it 
  .                           % - to put our set in source order
no_dupes( [X|Xs] , V , S ) :- % otherwise ...
  ( member(X,V) ->            % - if X is already in the set, 
    V1 = V                    % -   then we discard X
  ; V1 = [X|V]                % -   else we add X to the set 
  ) ,                         % And...
  no_dupes( Xs , V1 , S )     % we recurse down on the remainder
  .                           % Easy!

能否以纯粹高效的方式完成? ,通过使用 tpartition/4 and (=)/3 像这样:

dups_gone([]    ,[]).
dups_gone([X|Xs],Zs0) :-
   tpartition(=(X),Xs,Ts,Fs),
   if_(Ts=[], Zs0=[X|Zs], Zs0=Zs),
   dups_gone(Fs,Zs).

一些示例地面查询(所有这些都确定性地成功):

?- dups_gone([a,a,a],Xs).
Xs = [].

?- dups_gone([a,b,c],Xs).
Xs = [a, b, c].

?- dups_gone([a,b,c,b],Xs).
Xs = [a, c].

?- dups_gone([a,b,c,b,a],Xs).
Xs = [c].

?- dups_gone([a,b,c,b,a,a,a],Xs).
Xs = [c].

?- dups_gone([a,b,c,b,a,a,a,c],Xs).
Xs = [].

这也适用于更一般的查询。考虑:

?- length(Xs,N), dups_gone(Xs,Zs).
  N = 0, Xs = [],            Zs = []
; N = 1, Xs = [_A],          Zs = [_A]
; N = 2, Xs = [_A,_A],       Zs = []
; N = 2, Xs = [_A,_B],       Zs = [_A,_B],    dif(_A,_B)
; N = 3, Xs = [_A,_A,_A],    Zs = []
; N = 3, Xs = [_A,_A,_B],    Zs = [_B],       dif(_A,_B)
; N = 3, Xs = [_A,_B,_A],    Zs = [_B],       dif(_A,_B)
; N = 3, Xs = [_B,_A,_A],    Zs = [_B],       dif(_A,_B), dif(_A,_B)
; N = 3, Xs = [_A,_B,_C],    Zs = [_A,_B,_C], dif(_A,_B), dif(_A,_C), dif(_B,_C)
; N = 4, Xs = [_A,_A,_A,_A], Zs = [] 
...