按行和列过滤子集 Pandas 数据框
Filter Subset Pandas Dataframe by rows and columns
我有以下数据框:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.array(([1,2,3], [1,2,3], [1,2,3], [4,5,6])),
columns=['one','two','three'])
#BelowI am sub setting by rows and columns. But I want to have more than just one column.
#In this case Column 'One' and 'two'
small=df[df.one==1].one
这里有什么选择?
您可以使用 loc
:
df = pd.DataFrame(np.array(([1,2,3], [1,2,3], [1,2,3], [4,5,6])),
columns=['one','two','three'])
small=df.loc[df.one==1, ["one", "two"]]
# > one two
# 0 1 2
# 1 1 2
# 2 1 2
loc
的第一个元素是需要的行;第二个是想要的列。如此处所示,它允许屏蔽和索引。
我有以下数据框:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.array(([1,2,3], [1,2,3], [1,2,3], [4,5,6])),
columns=['one','two','three'])
#BelowI am sub setting by rows and columns. But I want to have more than just one column.
#In this case Column 'One' and 'two'
small=df[df.one==1].one
这里有什么选择?
您可以使用 loc
:
df = pd.DataFrame(np.array(([1,2,3], [1,2,3], [1,2,3], [4,5,6])),
columns=['one','two','three'])
small=df.loc[df.one==1, ["one", "two"]]
# > one two
# 0 1 2
# 1 1 2
# 2 1 2
loc
的第一个元素是需要的行;第二个是想要的列。如此处所示,它允许屏蔽和索引。