在 r 中使用 data.table 和替换函数
Using data.table with replacement functions in r
我今天遇到了以下问题,我想知道是否有更好的方法来完成我想做的事情。
假设我有以下 data.table
(只是一个小时时间戳):
library(data.table)
tdt <- data.table(Timestamp = seq(as.POSIXct("1980-01-01 00:00:00"), as.POSIXct("2015-01-01 00:00:00"), '1 hour'))
> tdt
Timestamp
1: 1980-01-01 00:00:00
2: 1980-01-01 01:00:00
3: 1980-01-01 02:00:00
4: 1980-01-01 03:00:00
5: 1980-01-01 04:00:00
---
306813: 2014-12-31 20:00:00
306814: 2014-12-31 21:00:00
306815: 2014-12-31 22:00:00
306816: 2014-12-31 23:00:00
306817: 2015-01-01 00:00:00
我的目标是将时间戳的分钟数更改为 10 分钟。
我知道我可以使用:
library(lubridate)
minute(tdt$Timestamp) <- 10
但这并没有利用超快的数据传输速度table(我需要)。在我的笔记本电脑上,这花费了:
> system.time(minute(tdt$Timestamp) <- 10)
user system elapsed
11.29 0.16 11.45
所以,我的问题是:我们能否以某种方式在数据 table 语法中使用替换函数,以便它可以使用 data.table
的速度执行我想要的操作?如果答案是否定的,任何其他 data.table
快速执行此操作的解决方案将是 acceptable.
如果您想知道我尝试过的其中一件事是:
tdt[, Timestamp2 := minute(Timestamp) <- 10]
这不起作用。
预期输出(但使用数据 table 语法):
> tdt
Timestamp
1: 1980-01-01 00:10:00
2: 1980-01-01 01:10:00
3: 1980-01-01 02:10:00
4: 1980-01-01 03:10:00
5: 1980-01-01 04:10:00
---
306813: 2014-12-31 20:10:00
306814: 2014-12-31 21:10:00
306815: 2014-12-31 22:10:00
306816: 2014-12-31 23:10:00
306817: 2015-01-01 00:10:00
一个 POSIXct
对象只是一个具有某些属性的双精度对象
storage.mode(as.POSIXct("1980-01-01 00:00:00"))
## [1] "double"
因此,为了高效地操作它,您可以将其视为一个,例如
tdt[, Timestamp := Timestamp + 600L]
将向每行添加 600 秒(10 分钟)参考
一些基准测试
tdt <- data.table(Timestamp = seq(as.POSIXct("1600-01-01 00:00:00"),
as.POSIXct("2015-01-01 00:00:00"),
'1 hour'))
system.time(minute(tdt$Timestamp) <- 10)
# user system elapsed
# 124.86 1.95 127.68
system.time(set(tdt, j = 1L, value = `minute<-`(tdt$Timestamp, 10)))
# user system elapsed
# 124.99 1.83 128.25
system.time(tdt[, Timestamp := Timestamp + dminutes(10)])
# user system elapsed
# 0.39 0.04 0.42
system.time(tdt[, Timestamp := Timestamp + 600L])
# user system elapsed
# 0.01 0.00 0.01
替换函数 运行 分为两步:
- 创建所需输出的函数,
- 然后将该输出分配给结果。
你可以运行step 1 without running step 2。该结果随后可用于设置 data.table 列(此处使用 set
,但您也可以使用 :=
)。
library(lubridate)
library(data.table)
tdt <- data.table(Timestamp = seq(as.POSIXct("1980-01-01 00:00:00"), as.POSIXct("2015-01-01 00:00:00"), '1 hour'))
minute(tdt$Timestamp) <- 20
print( `minute<-`(tdt$Timestamp,11) )
set( tdt, j=1L,value=`minute<-`(tdt$Timestamp,11) )
编辑:小型 data.table 与大型 data.table 基准测试
library(lubridate)
library(data.table)
library(microbenchmark)
# Config
tms <- 5L
# Sample data, 1 column
tdt <- data.table(Timestamp = seq(as.POSIXct("1980-01-01 00:00:00"), as.POSIXct("2015-01-01 00:00:00"), '1 hour'))
minute(tdt$Timestamp) <- 20
tdf <- as.data.frame( tdt )
# Sample data, lots of columns
bdf <- cbind( tdf, as.data.frame( replicate( 100, runif(nrow(tdt)) ) ) )
bdt <- as.data.table( bdf )
# Benchmark
microbenchmark(
`minute<-`(tdt$Timestamp,10), # How long does the operation to generate the new vector itself take?
set( tdt, j=1L,value=`minute<-`(tdt$Timestamp,11) ), # One column: How long does it take to generate the new vector and replace the contents in the data.table?
minute( tdf$Timestamp ) <- 12, # One column: How long does it take to do it with a data.frame?
set( tdt, j=1L,value=`minute<-`(bdt$Timestamp,13) ), # Many columns: How long does it take to generate the new vector and replace the contents in the data.table?
minute( bdf$Timestamp ) <- 14, # Many columns: How long does it take to do it with a data.frame?
times = tms
)
Unit: seconds
expr min lq mean median uq max neval
`minute<-`(tdt$Timestamp, 10) 1.304388 1.385883 1.417616 1.389316 1.459166 1.549327 5
set(tdt, j = 1L, value = `minute<-`(tdt$Timestamp, 11)) 1.314495 1.344277 1.376241 1.352124 1.389083 1.481225 5
minute(tdf$Timestamp) <- 12 1.342104 1.349231 1.488639 1.378840 1.380659 1.992358 5
set(tdt, j = 1L, value = `minute<-`(bdt$Timestamp, 13)) 1.337944 1.383429 1.402802 1.418211 1.418922 1.455503 5
minute(bdf$Timestamp) <- 14 1.332482 1.333713 1.355331 1.335728 1.342607 1.432127 5
看起来并没有更快,这与我对发生的事情的理解不符。奇怪。
我想这应该对你有用:
library(data.table)
library(lubridate)
tdt <- data.table(
Timestamp = seq(as.POSIXct("1980-01-01 00:00:00")
, as.POSIXct("2015-01-01 00:00:00")
, '1 hour'))
tdt[, Timestamp := Timestamp + dminutes(10)]
我今天遇到了以下问题,我想知道是否有更好的方法来完成我想做的事情。
假设我有以下 data.table
(只是一个小时时间戳):
library(data.table)
tdt <- data.table(Timestamp = seq(as.POSIXct("1980-01-01 00:00:00"), as.POSIXct("2015-01-01 00:00:00"), '1 hour'))
> tdt
Timestamp
1: 1980-01-01 00:00:00
2: 1980-01-01 01:00:00
3: 1980-01-01 02:00:00
4: 1980-01-01 03:00:00
5: 1980-01-01 04:00:00
---
306813: 2014-12-31 20:00:00
306814: 2014-12-31 21:00:00
306815: 2014-12-31 22:00:00
306816: 2014-12-31 23:00:00
306817: 2015-01-01 00:00:00
我的目标是将时间戳的分钟数更改为 10 分钟。
我知道我可以使用:
library(lubridate)
minute(tdt$Timestamp) <- 10
但这并没有利用超快的数据传输速度table(我需要)。在我的笔记本电脑上,这花费了:
> system.time(minute(tdt$Timestamp) <- 10)
user system elapsed
11.29 0.16 11.45
所以,我的问题是:我们能否以某种方式在数据 table 语法中使用替换函数,以便它可以使用 data.table
的速度执行我想要的操作?如果答案是否定的,任何其他 data.table
快速执行此操作的解决方案将是 acceptable.
如果您想知道我尝试过的其中一件事是:
tdt[, Timestamp2 := minute(Timestamp) <- 10]
这不起作用。
预期输出(但使用数据 table 语法):
> tdt
Timestamp
1: 1980-01-01 00:10:00
2: 1980-01-01 01:10:00
3: 1980-01-01 02:10:00
4: 1980-01-01 03:10:00
5: 1980-01-01 04:10:00
---
306813: 2014-12-31 20:10:00
306814: 2014-12-31 21:10:00
306815: 2014-12-31 22:10:00
306816: 2014-12-31 23:10:00
306817: 2015-01-01 00:10:00
一个 POSIXct
对象只是一个具有某些属性的双精度对象
storage.mode(as.POSIXct("1980-01-01 00:00:00"))
## [1] "double"
因此,为了高效地操作它,您可以将其视为一个,例如
tdt[, Timestamp := Timestamp + 600L]
将向每行添加 600 秒(10 分钟)参考
一些基准测试
tdt <- data.table(Timestamp = seq(as.POSIXct("1600-01-01 00:00:00"),
as.POSIXct("2015-01-01 00:00:00"),
'1 hour'))
system.time(minute(tdt$Timestamp) <- 10)
# user system elapsed
# 124.86 1.95 127.68
system.time(set(tdt, j = 1L, value = `minute<-`(tdt$Timestamp, 10)))
# user system elapsed
# 124.99 1.83 128.25
system.time(tdt[, Timestamp := Timestamp + dminutes(10)])
# user system elapsed
# 0.39 0.04 0.42
system.time(tdt[, Timestamp := Timestamp + 600L])
# user system elapsed
# 0.01 0.00 0.01
替换函数 运行 分为两步:
- 创建所需输出的函数,
- 然后将该输出分配给结果。
你可以运行step 1 without running step 2。该结果随后可用于设置 data.table 列(此处使用 set
,但您也可以使用 :=
)。
library(lubridate)
library(data.table)
tdt <- data.table(Timestamp = seq(as.POSIXct("1980-01-01 00:00:00"), as.POSIXct("2015-01-01 00:00:00"), '1 hour'))
minute(tdt$Timestamp) <- 20
print( `minute<-`(tdt$Timestamp,11) )
set( tdt, j=1L,value=`minute<-`(tdt$Timestamp,11) )
编辑:小型 data.table 与大型 data.table 基准测试
library(lubridate)
library(data.table)
library(microbenchmark)
# Config
tms <- 5L
# Sample data, 1 column
tdt <- data.table(Timestamp = seq(as.POSIXct("1980-01-01 00:00:00"), as.POSIXct("2015-01-01 00:00:00"), '1 hour'))
minute(tdt$Timestamp) <- 20
tdf <- as.data.frame( tdt )
# Sample data, lots of columns
bdf <- cbind( tdf, as.data.frame( replicate( 100, runif(nrow(tdt)) ) ) )
bdt <- as.data.table( bdf )
# Benchmark
microbenchmark(
`minute<-`(tdt$Timestamp,10), # How long does the operation to generate the new vector itself take?
set( tdt, j=1L,value=`minute<-`(tdt$Timestamp,11) ), # One column: How long does it take to generate the new vector and replace the contents in the data.table?
minute( tdf$Timestamp ) <- 12, # One column: How long does it take to do it with a data.frame?
set( tdt, j=1L,value=`minute<-`(bdt$Timestamp,13) ), # Many columns: How long does it take to generate the new vector and replace the contents in the data.table?
minute( bdf$Timestamp ) <- 14, # Many columns: How long does it take to do it with a data.frame?
times = tms
)
Unit: seconds
expr min lq mean median uq max neval
`minute<-`(tdt$Timestamp, 10) 1.304388 1.385883 1.417616 1.389316 1.459166 1.549327 5
set(tdt, j = 1L, value = `minute<-`(tdt$Timestamp, 11)) 1.314495 1.344277 1.376241 1.352124 1.389083 1.481225 5
minute(tdf$Timestamp) <- 12 1.342104 1.349231 1.488639 1.378840 1.380659 1.992358 5
set(tdt, j = 1L, value = `minute<-`(bdt$Timestamp, 13)) 1.337944 1.383429 1.402802 1.418211 1.418922 1.455503 5
minute(bdf$Timestamp) <- 14 1.332482 1.333713 1.355331 1.335728 1.342607 1.432127 5
看起来并没有更快,这与我对发生的事情的理解不符。奇怪。
我想这应该对你有用:
library(data.table)
library(lubridate)
tdt <- data.table(
Timestamp = seq(as.POSIXct("1980-01-01 00:00:00")
, as.POSIXct("2015-01-01 00:00:00")
, '1 hour'))
tdt[, Timestamp := Timestamp + dminutes(10)]