Python 将循环中的数据追加到数据框中
Python Append Data from Loop into Data frame
我创建了这段代码,我可以在其中提取我想要的数据,但无法按应有的方式对其进行排序。我猜这与我通过忽略索引附加每个项目的方式有关,但我找不到解决方法。
这是我的代码:
import json
import pandas as pd
#load json object
with open("c:\Sample.json","r",encoding='utf-8') as file:
data = file.read()
data2 = json.loads(data)
print("Type:", type(data2))
cls=['Image', 'Email', 'User', 'Members', 'Time']
df = pd.DataFrame(columns = cls )
for d in data2['mydata']:
for k,v in d.items():
#print(k)
if k == 'attachments':
#print(d.get('attachments')[0]['id'])
image = (d.get('attachments')[0]['id'])
df=df.append({'Image':image},ignore_index = True)
#df['Message'] = image
if k == 'author_user_email':
#print(d.get('author_user_email'))
email = (d.get('author_user_email'))
df=df.append({'Email':email}, ignore_index = True)
#df['Email'] = email
if k == 'author_user_name':
#print(d.get('author_user_name'))
user = (d.get('author_user_name'))
df=df.append({'User':user}, ignore_index = True)
#df['User'] = user
if k == 'room_name':
#print(d.get('room_name'))
members = (d.get('room_name'))
df=df.append({'Members':members}, ignore_index = True)
#df['Members'] = members
if k == 'ts_iso':
#print(d.get('ts_iso'))
time = (d.get('ts_iso'))
df=df.append({'Time':time}, ignore_index = True)
#df['Time'] = time
df
print('Finished getting Data')
df1 = (df.head())
print(df)
print(df.head())
df.to_csv(r'c:\sample.csv', encoding='utf-8')
代码给出了这个结果
我正在寻找这个
文件的数据是这样的:
{
"mydata": [
{
"attachments": [
{
"filename": "image.png",
"id": "888888888"
}
],
"author_user_email": "email@email.com",
"author_user_id": "91",
"author_user_name": "Marlone",
"message": "",
"room_id": "999",
"room_members": [
{
"room_member_id": "91",
"room_member_name": "Marlone"
},
{
"room_member_id": "9191",
"room_member_name": " +16309438985"
}
],
"room_name": "SMS [Marlone] [ +7777777777]",
"room_type": "sms",
"ts": 55,
"ts_iso": "2021-06-13T18:17:32.877369+00:00"
},
{
"author_user_email": "email@email.com",
"author_user_id": "21",
"author_user_name": "Chris",
"message": "Hi",
"room_id": "100",
"room_members": [
{
"room_member_id": "21",
"room_member_name": "Joe"
},
{
"room_member_id": "21",
"room_member_name": "Chris"
}
],
"room_name": "Direct [Chris] [Joe]",
"room_type": "direct",
"ts": 12345678910,
"ts_iso": "2021-06-14T14:42:07.572479+00:00"
}]}
如有任何帮助,我们将不胜感激。我是 python 的新手,正在自学。
尝试:
import json
import pandas as pd
with open("your_data.json", "r") as f_in:
data = json.load(f_in)
tmp = []
for d in data["mydata"]:
image = d.get("attachments", [{"id": None}])[0]["id"]
email = d.get("author_user_email")
user = d.get("author_user_name")
members = d.get("room_name")
time = d.get("ts_iso")
tmp.append((image, email, user, members, time))
df = pd.DataFrame(tmp, columns=["Image", "Email", "User", "Members", "Time"])
print(df)
打印:
Image Email User Members Time
0 888888888 email@email.com Marlone SMS [Marlone] [ +7777777777] 2021-06-13T18:17:32.877369+00:00
1 None email@email.com Chris Direct [Chris] [Joe] 2021-06-14T14:42:07.572479+00:00
尽管其他答案确实有效,但 pandas 内置 reader 用于 json 文件 pd.read_json
:https://pandas.pydata.org/pandas-docs/version/1.1.3/reference/api/pandas.read_json.html
它的好处是能够通过分块处理非常大的数据集,以及处理多种不同的格式。另一个答案对于大型数据集来说性能不佳。
这会让你开始:
import pandas as pd
df = pd.read_json("c:\Sample.json")
问题是 append()
添加了一个新行。因此,您必须使用 at[]
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.at.html 指定 index/row。硒如下。由于我在 Linux.
,因此留下了一些 print/debug 消息并且输入和输出文件的路径发生了一些变化
import json
import pandas as pd
import pprint as pp
#load json object
with open("Sample.json","r",encoding='utf-8') as file:
data = file.read()
data2 = json.loads(data)
#pp.pprint(data2)
cls=['Image', 'Email', 'User', 'Members', 'Time']
df = pd.DataFrame(columns = cls )
pp.pprint(df)
index = 0
for d in data2['mydata']:
for k,v in d.items():
#print(k)
if k == 'attachments':
#print(d.get('attachments')[0]['id'])
image = (d.get('attachments')[0]['id'])
df.at[index, 'Image'] = image
#df['Message'] = image
if k == 'author_user_email':
#print(d.get('author_user_email'))
email = (d.get('author_user_email'))
df.at[index, 'Email'] = email
#df['Email'] = email
if k == 'author_user_name':
#print(d.get('author_user_name'))
user = (d.get('author_user_name'))
df.at[index, 'User'] = user
#df['User'] = user
if k == 'room_name':
#print(d.get('room_name'))
members = (d.get('room_name'))
df.at[index, 'Members'] = members
#df['Members'] = members
if k == 'ts_iso':
#print(d.get('ts_iso'))
time = (d.get('ts_iso'))
df.at[index, 'Time'] = time
#df['Time'] = time
index += 1
# start indexing from 0
df.reset_index()
# replace empty str/cells witn None
df.fillna('None', inplace=True)
pp.pprint(df)
print('Finished getting Data')
df1 = (df.head())
print(df)
print(df.head())
df.to_csv(r'sample.csv', encoding='utf-8')
我创建了这段代码,我可以在其中提取我想要的数据,但无法按应有的方式对其进行排序。我猜这与我通过忽略索引附加每个项目的方式有关,但我找不到解决方法。
这是我的代码:
import json
import pandas as pd
#load json object
with open("c:\Sample.json","r",encoding='utf-8') as file:
data = file.read()
data2 = json.loads(data)
print("Type:", type(data2))
cls=['Image', 'Email', 'User', 'Members', 'Time']
df = pd.DataFrame(columns = cls )
for d in data2['mydata']:
for k,v in d.items():
#print(k)
if k == 'attachments':
#print(d.get('attachments')[0]['id'])
image = (d.get('attachments')[0]['id'])
df=df.append({'Image':image},ignore_index = True)
#df['Message'] = image
if k == 'author_user_email':
#print(d.get('author_user_email'))
email = (d.get('author_user_email'))
df=df.append({'Email':email}, ignore_index = True)
#df['Email'] = email
if k == 'author_user_name':
#print(d.get('author_user_name'))
user = (d.get('author_user_name'))
df=df.append({'User':user}, ignore_index = True)
#df['User'] = user
if k == 'room_name':
#print(d.get('room_name'))
members = (d.get('room_name'))
df=df.append({'Members':members}, ignore_index = True)
#df['Members'] = members
if k == 'ts_iso':
#print(d.get('ts_iso'))
time = (d.get('ts_iso'))
df=df.append({'Time':time}, ignore_index = True)
#df['Time'] = time
df
print('Finished getting Data')
df1 = (df.head())
print(df)
print(df.head())
df.to_csv(r'c:\sample.csv', encoding='utf-8')
代码给出了这个结果
我正在寻找这个
文件的数据是这样的:
{
"mydata": [
{
"attachments": [
{
"filename": "image.png",
"id": "888888888"
}
],
"author_user_email": "email@email.com",
"author_user_id": "91",
"author_user_name": "Marlone",
"message": "",
"room_id": "999",
"room_members": [
{
"room_member_id": "91",
"room_member_name": "Marlone"
},
{
"room_member_id": "9191",
"room_member_name": " +16309438985"
}
],
"room_name": "SMS [Marlone] [ +7777777777]",
"room_type": "sms",
"ts": 55,
"ts_iso": "2021-06-13T18:17:32.877369+00:00"
},
{
"author_user_email": "email@email.com",
"author_user_id": "21",
"author_user_name": "Chris",
"message": "Hi",
"room_id": "100",
"room_members": [
{
"room_member_id": "21",
"room_member_name": "Joe"
},
{
"room_member_id": "21",
"room_member_name": "Chris"
}
],
"room_name": "Direct [Chris] [Joe]",
"room_type": "direct",
"ts": 12345678910,
"ts_iso": "2021-06-14T14:42:07.572479+00:00"
}]}
如有任何帮助,我们将不胜感激。我是 python 的新手,正在自学。
尝试:
import json
import pandas as pd
with open("your_data.json", "r") as f_in:
data = json.load(f_in)
tmp = []
for d in data["mydata"]:
image = d.get("attachments", [{"id": None}])[0]["id"]
email = d.get("author_user_email")
user = d.get("author_user_name")
members = d.get("room_name")
time = d.get("ts_iso")
tmp.append((image, email, user, members, time))
df = pd.DataFrame(tmp, columns=["Image", "Email", "User", "Members", "Time"])
print(df)
打印:
Image Email User Members Time
0 888888888 email@email.com Marlone SMS [Marlone] [ +7777777777] 2021-06-13T18:17:32.877369+00:00
1 None email@email.com Chris Direct [Chris] [Joe] 2021-06-14T14:42:07.572479+00:00
尽管其他答案确实有效,但 pandas 内置 reader 用于 json 文件 pd.read_json
:https://pandas.pydata.org/pandas-docs/version/1.1.3/reference/api/pandas.read_json.html
它的好处是能够通过分块处理非常大的数据集,以及处理多种不同的格式。另一个答案对于大型数据集来说性能不佳。
这会让你开始:
import pandas as pd
df = pd.read_json("c:\Sample.json")
问题是 append()
添加了一个新行。因此,您必须使用 at[]
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.at.html 指定 index/row。硒如下。由于我在 Linux.
import json
import pandas as pd
import pprint as pp
#load json object
with open("Sample.json","r",encoding='utf-8') as file:
data = file.read()
data2 = json.loads(data)
#pp.pprint(data2)
cls=['Image', 'Email', 'User', 'Members', 'Time']
df = pd.DataFrame(columns = cls )
pp.pprint(df)
index = 0
for d in data2['mydata']:
for k,v in d.items():
#print(k)
if k == 'attachments':
#print(d.get('attachments')[0]['id'])
image = (d.get('attachments')[0]['id'])
df.at[index, 'Image'] = image
#df['Message'] = image
if k == 'author_user_email':
#print(d.get('author_user_email'))
email = (d.get('author_user_email'))
df.at[index, 'Email'] = email
#df['Email'] = email
if k == 'author_user_name':
#print(d.get('author_user_name'))
user = (d.get('author_user_name'))
df.at[index, 'User'] = user
#df['User'] = user
if k == 'room_name':
#print(d.get('room_name'))
members = (d.get('room_name'))
df.at[index, 'Members'] = members
#df['Members'] = members
if k == 'ts_iso':
#print(d.get('ts_iso'))
time = (d.get('ts_iso'))
df.at[index, 'Time'] = time
#df['Time'] = time
index += 1
# start indexing from 0
df.reset_index()
# replace empty str/cells witn None
df.fillna('None', inplace=True)
pp.pprint(df)
print('Finished getting Data')
df1 = (df.head())
print(df)
print(df.head())
df.to_csv(r'sample.csv', encoding='utf-8')