CNN LSTM 从 Keras 到 Pytorch

CNN LSTM from Keras to Pytroch

我正在尝试将 CNN LSTM 模型的 Notebook 从 Keras 转换为 Pytorch。 我正在为模型定义中的 dimensions/shapes 而苦苦挣扎。

def build_model():
    
    # Inputs to the model
    input_img = layers.Input(shape=(200,50,1), name="image", dtype="float32") 
    labels = layers.Input(name="label", shape=(None,), dtype="float32")

    # First conv block
    x = layers.Conv2D(32,(3, 3),activation="relu",kernel_initializer="he_normal",padding="same",name="Conv1")(input_img)
    x = layers.MaxPooling2D((2, 2), name="pool1")(x)

    # Second conv block
    x = layers.Conv2D(64,(3, 3),activation="relu",kernel_initializer="he_normal",padding="same",name="Conv2")(x)
    x = layers.MaxPooling2D((2, 2), name="pool2")(x)

    # We have used two max pool with pool size and strides 2.
    # Hence, downsampled feature maps are 4x smaller. The number of
    # filters in the last layer is 64. Reshape accordingly before
    # passing the output to the RNN part of the model 
    x = layers.Reshape(target_shape=(50, 768), name="reshape")(x)
    x = layers.Dense(64, activation="relu", name="dense1")(x)
    x = layers.Dropout(0.2)(x)

    # RNNs
    x = layers.Bidirectional(layers.LSTM(128, return_sequences=True, dropout=0.25))(x)
    x = layers.Bidirectional(layers.LSTM(64, return_sequences=True, dropout=0.25))(x)

    # Output layer
    x = layers.Dense(20, activation="softmax", name="dense2")(x) # 20 = 19 characters + UKN

    # Add CTC layer for calculating CTC loss at each step
    output = CTCLayer(name="ctc_loss")(labels, x)

    # Define the model
    model = keras.models.Model(inputs=[input_img, labels], outputs=output, name="ocr_cnn_lstm_model")
    
    # Compile the model and return
    model.compile(optimizer=keras.optimizers.Adam())
    return model

目前我只有前 2 个卷积层,它们已经不起作用了。:

# X_train Shape: (832, 1, 50, 200)

class Net(nn.Module):   
    def __init__(self):
        super(Net, self).__init__()

        # Defining a 2D convolution layer
        self.conv = nn.Conv2d(1, 32, kernel_size=3, padding = 'same')
        # Defining another 2D convolution layer
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding ='same')
        
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.relu = nn.ReLU(inplace=True)


        self.out = nn.Linear(64 * 7 * 7, 10)

    # Defining the forward pass    
    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        x = self.pool(x)
        print(x.shape)

        x = x.view(x.size(0),-1)
        
        X = self.out(x)
        return x

如果有人可以帮助我解决输入形状(尤其是 nn.Linear 中的问题,我将不胜感激,但我怀疑其余部分是否与初始笔记本相对应)。

当我尝试 运行 我得到的模型时:


---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
/tmp/ipykernel_9064/4102025856.py in <module>
----> 1 out = model(torch.Tensor(X_train))

~/env/neural/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
   1049         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1050                 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051             return forward_call(*input, **kwargs)
   1052         # Do not call functions when jit is used
   1053         full_backward_hooks, non_full_backward_hooks = [], []

/tmp/ipykernel_9064/3113669837.py in forward(self, x)
     25         x = x.view(x.size(0),-1)
     26 
---> 27         X = self.out(x)
     28         return x

~/env/neural/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
   1049         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1050                 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051             return forward_call(*input, **kwargs)
   1052         # Do not call functions when jit is used
   1053         full_backward_hooks, non_full_backward_hooks = [], []

~/env/neural/lib/python3.7/site-packages/torch/nn/modules/linear.py in forward(self, input)
     94 
     95     def forward(self, input: Tensor) -> Tensor:
---> 96         return F.linear(input, self.weight, self.bias)
     97 
     98     def extra_repr(self) -> str:

~/env/neural/lib/python3.7/site-packages/torch/nn/functional.py in linear(input, weight, bias)
   1845     if has_torch_function_variadic(input, weight):
   1846         return handle_torch_function(linear, (input, weight), input, weight, bias=bias)
-> 1847     return torch._C._nn.linear(input, weight, bias)
   1848 
   1849 

RuntimeError: mat1 and mat2 shapes cannot be multiplied (832x80000 and 3136x10)



提前致谢。

这行得通。您没有为线性层使用良好的输入形状。

class Net(nn.Module):   


   def __init__(self):
        super(Net, self).__init__()

        # Defining a 2D convolution layer
        self.conv = nn.Conv2d(1, 32, kernel_size=3, padding=2)
        # Defining another 2D convolution layer
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=2)
        
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.relu = nn.ReLU(inplace=True)


        self.out = nn.Linear(32 * 26 * 101, 10)

    # Defining the forward pass    
    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        x = self.pool(x)
        print(x.shape)
        # torch.Size([832, 32, 26, 101])

        x = x.view(x.size(0),-1)
        
        X = self.out(x)
        return x

if __name__ == "__main__":
    x = torch.randn(832, 1, 50, 200)
    net = Net()
    out = net(x)