如何用三个 类 构建用于缺陷检测的 cnn 模型并在其上测试一张图像

how to build cnn model for defect detection with three classes and test one image on it

我构建了一个 CNN 模型来检测图像上的两种缺陷。这些 类 是 'big' 和 'small' 并且准确性非常好。我的模型架构如下:

inputs = tf.keras.Input(shape=(120, 120, 3))
x = tf.keras.layers.Conv2D(filters=16, kernel_size=(3, 3), activation='relu')(inputs)
x = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(x)
x = tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu')(x)
x = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(x)
x = tf.keras.layers.GlobalAveragePooling2D()(x)
outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x)

model = tf.keras.Model(inputs=inputs, outputs=outputs)

model.compile(
    optimizer='adam',
    loss='binary_crossentropy',
    metrics=['accuracy']
)

print(model.summary())

history = model.fit(
    train_data,
    validation_data=val_data,
    epochs=100,
    callbacks=[
        tf.keras.callbacks.EarlyStopping(
            monitor='val_loss',
            patience=3,
            restore_best_weights=True
        )
    ]
)

现在,我想将此 CNN 模型用于多个 类,而 类 将是 'big'、'small'、'other'。我有数据集,但我不知道如何为三个 类 更改模型。另外,最后我想用我的 CNN 模型测试一张图像,如果插入的图像是大的、小的或其他的,我想得到标签,但我不知道如何。

试试这个:

model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(input_shape = (120, 120, 3), filters=16, kernel_size=(3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2)))
model.add(tf.keras.layers.GlobalAveragePooling2D())
model.add(tf.keras.layers.Dense(3, activation='softmax'))

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

要预测,可以使用这个代码:

from PIL import Image
import numpy as np
from skimage import transform

def load(filename):
    np_image = Image.open(filename)
    np_image = np.array(np_image).astype('float32')/255
    np_image = transform.resize(np_image, (120, 120, 3))
    np_image = np.expand_dims(np_image, axis=0)
    return np_image


folder_path = 'Dataset/test/4.jpg'
image = load(folder_path)
pred = model.predict_classes(image)
pred.tolist()[0]