遍历数据表并更改满足特定条件的值

Loop through datatable & alter values meeting a specific condition

我正在尝试创建一个以数据table 和变量作为参数的函数。数据 table 将始终有 4 列(第 1 列是日期列,其他 3 列是数字列)但行数会有所不同。该变量是一个整数,设置为截止值。该函数的目标是输出数据table,其中数字列中的所有值都大于第一个大于变量的数字。这是正在测试的数据 table 的片段

#datatable dt
> dput(dt[30:40])
structure(list(a = structure(c(18517, 18524, 18531, 18538, 18545, 
18552, 18559, 18566, 18573, 18580, 18587), class = "Date"), b = c(14L, 
16L, 18L, 21L, 23L, 26L, 29L, 32L, 35L, 39L, 42L), c = c(9L, 
10L, 12L, 14L, 16L, 18L, 21L, 23L, 26L, 29L, 32L), d = c(4L, 
5L, 6L, 8L, 9L, 11L, 13L, 16L, 18L, 20L, 23L)), row.names = c(NA, 
-11L), class = c("data.table", "data.frame"))
> dt[30:40]
             a  b  c  d
 1: 2020-09-12 14  9  4
 2: 2020-09-19 16 10  5
 3: 2020-09-26 18 12  6
 4: 2020-10-03 21 14  8
 5: 2020-10-10 23 16  9
 6: 2020-10-17 26 18 11
 7: 2020-10-24 29 21 13
 8: 2020-10-31 32 23 16
 9: 2020-11-07 35 26 18
10: 2020-11-14 39 29 20
11: 2020-11-21 42 32 23

这是我想出的函数:

cutoff <-  21 #some integer
checkDT <- function(dt, cutoff){
  columns <- c('b','c','d')
  for (i in columns){
    for (j in dt[,..columns]){
      if(is.infinite(min(j[which(j > cutoff)]))){
       dt <- dt
      }else{
       dt[i > min(j[which(j > cutoff)]), `:=` (i = NA)]
      }
     }
   return(dt)
  }
}

这会输出一个数据table,其中第五列 i 全部为 NA。如果我对特定列使用此语句而不是预期的输出,但我正在尝试让函数执行此语句以删除某些代码行。

if(is.infinite(min(dt$b[which(dt$b > cutoff)]))){
    dt <- dt
  } else{
    dt[b > min(dt$b[which(dt$b > cutoff)]), `:=`(b = NA)] 
  }
> dt[30:40]
             a  b  c  d
 1: 2020-09-12 14  9  4
 2: 2020-09-19 16 10  5
 3: 2020-09-26 18 12  6
 4: 2020-10-03 21 14  8
 5: 2020-10-10 23 16  9
 6: 2020-10-17 NA 18 11
 7: 2020-10-24 NA 21 13
 8: 2020-10-31 NA 23 16
 9: 2020-11-07 NA 26 18
10: 2020-11-14 NA 29 20
11: 2020-11-21 NA 32 23

这是截止值为 21 的预期输出:

             a  b  c  d
 1: 2020-09-12 14  9  4
 2: 2020-09-19 16 10  5
 3: 2020-09-26 18 12  6
 4: 2020-10-03 21 14  8
 5: 2020-10-10 23 16  9
 6: 2020-10-17 NA 18 11
 7: 2020-10-24 NA 21 13
 8: 2020-10-31 NA 23 16
 9: 2020-11-07 NA NA 18
10: 2020-11-14 NA NA 20
11: 2020-11-21 NA NA 23

我在这里简化了你的很多符号
在 data.table 中,您不必在括号内再次使用 dt$
which() 不是必需的,因为可以直接使用逻辑向量来指示要保留的行。
关键是使用 get 函数将文本转换为列名
我只是使用 suppressWarnings 来消除无限警告,
在这种情况下,代码不会替换任何内容,而这正是您想要的。

checkDT <- function(dt, cutoff) {
  columns <- c('b', 'c', 'd')
  for (i in columns) {
    suppressWarnings(dt[get(i) > min(dt[get(i) > cutoff, get(i)]), (i) := NA]) 
  }
  dt[]
}

checkDT(dt, cutoff) 给出了想要的结果

这是使用 lapply.SDcols 的另一种方法。

checkDT <- function(dt1, cutoff) {
  columns <- c('b','c','d')
  dt1[, (columns) := lapply(.SD, function(x) 
          replace(x, x > x[x > cutoff][1], NA)), .SDcols = columns][]
}

checkDT(dt, 21)

#             a  b  c  d
# 1: 2020-09-12 14  9  4
# 2: 2020-09-19 16 10  5
# 3: 2020-09-26 18 12  6
# 4: 2020-10-03 21 14  8
# 5: 2020-10-10 23 16  9
# 6: 2020-10-17 NA 18 11
# 7: 2020-10-24 NA 21 13
# 8: 2020-10-31 NA 23 16
# 9: 2020-11-07 NA NA 18
#10: 2020-11-14 NA NA 20
#11: 2020-11-21 NA NA 23