数据帧分割和丢弃
Data frame segmentation and dropping
我在 pandas 中有以下 DataFrame:
A = [1,10,23,45,24,24,55,67,73,26,13,96,53,23,24,43,90],
B = [24,23,29, BW,49,59,72, BW,9,183,17, txt,2,49,BW,479,BW]
我想创建一个新列,在该列中,我想根据 B 列的条件从 A 列获取值。条件是如果两个连续的 ''txt'' 之间没有'BW'',那么我将把它们放在 C 列上。但是如果在两个连续的 ''BW'' 之间有 ''txt'',我想删除所有这些值。所以预期的输出应该是这样的:
A = [1,10,23,45,24,24,55,67,73,26,13,96,53,23,24,43,90],
B = [24,23,29, BW,49,59,72, BW,9,183,17, txt,2,49,BW,479,BW]
C = [1,10,23, BW, 24,24,55, BW, nan, nan, nan, nan, nan, nan, BW, 43,BW]
我不知道该怎么做。非常感谢任何帮助。
我不知道这是否是最有效的方法,但您可以通过以下方式映射列 B 中的值来创建一个名为 mask
的新列:'BW'
到 True
、'txt'
到 False
以及所有其他值到 np.nan
.
然后如果你向前填充来自mask
的NaN,向后填充来自mask
的NaN并逻辑组合结果(只要向前或向后填充之一设置为True columns 为 False),您可以创建一个名为 final_mask
的列,其中包含 txt 的连续 BW 之间的所有值都用 True 填充。
只有当 final_mask
为假且 B 列不是 'BW'、[=37 时,您才可以使用 .apply
到 select 列 A 的值=] B 列,如果 final_mask
为 False,B 列为 'BW',否则为 np.nan
。
import numpy as np
import pandas as pd
A = [1,10,23,45,24,24,55,67,73,26,13,96,53,23,24,43,90]
B = [24,23,29, 'BW',49,59,72, 'BW',9,183,17, 'txt',2,49,'BW',479,'BW']
df = pd.DataFrame({'A':A,'B':B})
df["mask"] = df["B"].apply(lambda x: True if x == 'BW' else False if x == 'txt' else np.nan)
df["ffill"] = df["mask"].fillna(method="ffill")
df["bfill"] = df["mask"].fillna(method="bfill")
df["final_mask"] = (df["ffill"] == False) | (df["bfill"] == False)
df["C"] = df.apply(lambda x: x['A'] if (
(x['final_mask'] == False) & (x['B'] != 'BW'))
else x['B'] if ((x['final_mask'] == False) & (x['B'] == 'BW'))
else np.nan, axis=1
)
>>> df
A B mask ffill bfill final_mask C
0 1 24 NaN NaN True False 1
1 10 23 NaN NaN True False 10
2 23 29 NaN NaN True False 23
3 45 BW True True True False BW
4 24 49 NaN True True False 24
5 24 59 NaN True True False 24
6 55 72 NaN True True False 55
7 67 BW True True True False BW
8 73 9 NaN True False True NaN
9 26 183 NaN True False True NaN
10 13 17 NaN True False True NaN
11 96 txt False False False True NaN
12 53 2 NaN False True True NaN
13 23 49 NaN False True True NaN
14 24 BW True True True False BW
15 43 479 NaN True True False 43
16 90 BW True True True False BW
删除我们在此过程中创建的列:
df.drop(columns=['mask','ffill','bfill','final_mask'])
A B C
0 1 24 1
1 10 23 10
2 23 29 23
3 45 BW BW
4 24 49 24
5 24 59 24
6 55 72 55
7 67 BW BW
8 73 9 NaN
9 26 183 NaN
10 13 17 NaN
11 96 txt NaN
12 53 2 NaN
13 23 49 NaN
14 24 BW BW
15 43 479 43
16 90 BW BW
编辑:
更新的答案在最终 df 中缺少 BW
的值。
import pandas as pd
import numpy as np
BW = 999
txt = -999
A = [1,10,23,45,24,24,55,67,73,26,13,96,53,23,24,43,90]
B = [24,23,29, BW,49,59,72, BW,9,183,17, txt,2,49,BW,479,BW]
df = pd.DataFrame({'A': A, 'B': B})
df = df.assign(group = (df[~df['B'].between(BW,BW)].index.to_series().diff() > 1).cumsum())
df['C'] = np.where(df.group == df[df.B == txt].group.values[0], np.nan, df.A)
df['C'] = np.where(df['B'] == BW, df['B'], df['C'])
df['C'] = df['C'].astype('Int64')
df = df.drop('group', axis=1)
In [435]: df
Out[435]:
A B C
0 1 24 1
1 10 23 10
2 23 29 23
3 45 999 999 <-- BW
4 24 49 24
5 24 59 24
6 55 72 55
7 67 999 999 <-- BW
8 73 9 <NA>
9 26 183 <NA>
10 13 17 <NA>
11 96 -999 <NA> <-- txt is in the middle of BW
12 53 2 <NA>
13 23 49 <NA>
14 24 999 999 <-- BW
15 43 479 43
16 90 999 999 <-- BW
你可以这样实现,假设BW
和txt
是特定值我只是用一些随机数填充它们来区分它们
In [277]: BW = 999
In [278]: txt = -999
In [293]: A = [1,10,23,45,24,24,55,67,73,26,13,96,53,23,24,43,90]
...: B = [24,23,29, BW,49,59,72, BW,9,183,17, txt,49,BW,479,BW]
In [300]: df = pd.DataFrame({'A': A, 'B': B})
In [301]: df
Out[301]:
A B
0 1 24
1 10 23
2 23 29
3 45 999
4 24 49
5 24 59
6 55 72
7 67 999
8 73 9
9 26 183
10 13 17
11 96 -999
12 53 2
13 23 49
14 24 999
15 43 479
16 90 999
首先让我们拆分不同的值组,这里我将它们拆分为唯一的组,其中每个组包含值 BW
和下一个 [=16] 之间的 B
值=].
In [321]: df = df.assign(group = (df[~df['B'].between(BW,BW)].index.to_series().diff() > 1).cumsum())
In [322]: df
Out[322]:
A B group
0 1 24 0.00000000
1 10 23 0.00000000
2 23 29 0.00000000
3 45 999 NaN
4 24 49 1.00000000
5 24 59 1.00000000
6 55 72 1.00000000
7 67 999 NaN
8 73 9 2.00000000
9 26 183 2.00000000
10 13 17 2.00000000
11 96 -999 2.00000000
12 53 2 2.00000000
13 23 49 2.00000000
14 24 999 NaN
15 43 479 3.00000000
16 90 999 NaN
接下来使用 np.where()
我们可以根据您设置的条件替换值。
In [360]: df['C'] = np.where(df.group == df[df.B == txt].group.values[0], np.nan, df.B)
In [432]: df
Out[432]:
A B group C
0 1 24 0.00000000 24.00000000
1 10 23 0.00000000 23.00000000
2 23 29 0.00000000 29.00000000
3 45 999 NaN 999.00000000
4 24 49 1.00000000 49.00000000
5 24 59 1.00000000 59.00000000
6 55 72 1.00000000 72.00000000
7 67 999 NaN 999.00000000
8 73 9 2.00000000 NaN
9 26 183 2.00000000 NaN
10 13 17 2.00000000 NaN
11 96 -999 2.00000000 NaN
12 53 2 2.00000000 NaN
13 23 49 2.00000000 NaN
14 24 999 NaN 999.00000000
15 43 479 3.00000000 479.00000000
16 90 999 NaN 999.00000000
这里我们需要将 B
等于 BW
for C
设置回 B
的值。
In [488]: df['C'] = np.where(df['B'] == BW, df['B'], df['C'])
In [489]: df
Out[489]:
A B group C
0 1 24 0.00000000 24.00000000
1 10 23 0.00000000 23.00000000
2 23 29 0.00000000 29.00000000
3 45 999 NaN 999.00000000
4 24 49 1.00000000 49.00000000
5 24 59 1.00000000 59.00000000
6 55 72 1.00000000 72.00000000
7 67 999 NaN 999.00000000
8 73 9 2.00000000 NaN
9 26 183 2.00000000 NaN
10 13 17 2.00000000 NaN
11 96 -999 2.00000000 NaN
12 53 2 2.00000000 NaN
13 23 49 2.00000000 NaN
14 24 999 NaN 999.00000000
15 43 479 3.00000000 479.00000000
16 90 999 NaN 999.00000000
最后只需将 float 列转换为 int 并删除我们不再需要的 group
列。如果您想保持 NaN 值为 np.nan
,则忽略到 Int64
.
的转换
In [396]: df.C = df.C.astype('Int64')
In [397]: df
Out[397]:
A B group C
0 1 24 0.00000000 24
1 10 23 0.00000000 23
2 23 29 0.00000000 29
3 45 999 NaN 999
4 24 49 1.00000000 49
5 24 59 1.00000000 59
6 55 72 1.00000000 72
7 67 999 NaN 999
8 73 9 2.00000000 <NA>
9 26 183 2.00000000 <NA>
10 13 17 2.00000000 <NA>
11 96 -999 2.00000000 <NA>
12 53 2 2.00000000 <NA>
13 23 49 2.00000000 <NA>
14 24 999 NaN 999
15 43 479 3.00000000 479
16 90 999 NaN 999
In [398]: df = df.drop('group', axis=1)
In [435]: df
Out[435]:
A B C
0 1 24 24
1 10 23 23
2 23 29 29
3 45 999 999
4 24 49 49
5 24 59 59
6 55 72 72
7 67 999 999
8 73 9 <NA>
9 26 183 <NA>
10 13 17 <NA>
11 96 -999 <NA>
12 53 2 <NA>
13 23 49 <NA>
14 24 999 999
15 43 479 479
16 90 999 999
我在 pandas 中有以下 DataFrame:
A = [1,10,23,45,24,24,55,67,73,26,13,96,53,23,24,43,90],
B = [24,23,29, BW,49,59,72, BW,9,183,17, txt,2,49,BW,479,BW]
我想创建一个新列,在该列中,我想根据 B 列的条件从 A 列获取值。条件是如果两个连续的 ''txt'' 之间没有'BW'',那么我将把它们放在 C 列上。但是如果在两个连续的 ''BW'' 之间有 ''txt'',我想删除所有这些值。所以预期的输出应该是这样的:
A = [1,10,23,45,24,24,55,67,73,26,13,96,53,23,24,43,90],
B = [24,23,29, BW,49,59,72, BW,9,183,17, txt,2,49,BW,479,BW]
C = [1,10,23, BW, 24,24,55, BW, nan, nan, nan, nan, nan, nan, BW, 43,BW]
我不知道该怎么做。非常感谢任何帮助。
我不知道这是否是最有效的方法,但您可以通过以下方式映射列 B 中的值来创建一个名为 mask
的新列:'BW'
到 True
、'txt'
到 False
以及所有其他值到 np.nan
.
然后如果你向前填充来自mask
的NaN,向后填充来自mask
的NaN并逻辑组合结果(只要向前或向后填充之一设置为True columns 为 False),您可以创建一个名为 final_mask
的列,其中包含 txt 的连续 BW 之间的所有值都用 True 填充。
只有当 final_mask
为假且 B 列不是 'BW'、[=37 时,您才可以使用 .apply
到 select 列 A 的值=] B 列,如果 final_mask
为 False,B 列为 'BW',否则为 np.nan
。
import numpy as np
import pandas as pd
A = [1,10,23,45,24,24,55,67,73,26,13,96,53,23,24,43,90]
B = [24,23,29, 'BW',49,59,72, 'BW',9,183,17, 'txt',2,49,'BW',479,'BW']
df = pd.DataFrame({'A':A,'B':B})
df["mask"] = df["B"].apply(lambda x: True if x == 'BW' else False if x == 'txt' else np.nan)
df["ffill"] = df["mask"].fillna(method="ffill")
df["bfill"] = df["mask"].fillna(method="bfill")
df["final_mask"] = (df["ffill"] == False) | (df["bfill"] == False)
df["C"] = df.apply(lambda x: x['A'] if (
(x['final_mask'] == False) & (x['B'] != 'BW'))
else x['B'] if ((x['final_mask'] == False) & (x['B'] == 'BW'))
else np.nan, axis=1
)
>>> df
A B mask ffill bfill final_mask C
0 1 24 NaN NaN True False 1
1 10 23 NaN NaN True False 10
2 23 29 NaN NaN True False 23
3 45 BW True True True False BW
4 24 49 NaN True True False 24
5 24 59 NaN True True False 24
6 55 72 NaN True True False 55
7 67 BW True True True False BW
8 73 9 NaN True False True NaN
9 26 183 NaN True False True NaN
10 13 17 NaN True False True NaN
11 96 txt False False False True NaN
12 53 2 NaN False True True NaN
13 23 49 NaN False True True NaN
14 24 BW True True True False BW
15 43 479 NaN True True False 43
16 90 BW True True True False BW
删除我们在此过程中创建的列:
df.drop(columns=['mask','ffill','bfill','final_mask'])
A B C
0 1 24 1
1 10 23 10
2 23 29 23
3 45 BW BW
4 24 49 24
5 24 59 24
6 55 72 55
7 67 BW BW
8 73 9 NaN
9 26 183 NaN
10 13 17 NaN
11 96 txt NaN
12 53 2 NaN
13 23 49 NaN
14 24 BW BW
15 43 479 43
16 90 BW BW
编辑:
更新的答案在最终 df 中缺少 BW
的值。
import pandas as pd
import numpy as np
BW = 999
txt = -999
A = [1,10,23,45,24,24,55,67,73,26,13,96,53,23,24,43,90]
B = [24,23,29, BW,49,59,72, BW,9,183,17, txt,2,49,BW,479,BW]
df = pd.DataFrame({'A': A, 'B': B})
df = df.assign(group = (df[~df['B'].between(BW,BW)].index.to_series().diff() > 1).cumsum())
df['C'] = np.where(df.group == df[df.B == txt].group.values[0], np.nan, df.A)
df['C'] = np.where(df['B'] == BW, df['B'], df['C'])
df['C'] = df['C'].astype('Int64')
df = df.drop('group', axis=1)
In [435]: df
Out[435]:
A B C
0 1 24 1
1 10 23 10
2 23 29 23
3 45 999 999 <-- BW
4 24 49 24
5 24 59 24
6 55 72 55
7 67 999 999 <-- BW
8 73 9 <NA>
9 26 183 <NA>
10 13 17 <NA>
11 96 -999 <NA> <-- txt is in the middle of BW
12 53 2 <NA>
13 23 49 <NA>
14 24 999 999 <-- BW
15 43 479 43
16 90 999 999 <-- BW
你可以这样实现,假设BW
和txt
是特定值我只是用一些随机数填充它们来区分它们
In [277]: BW = 999
In [278]: txt = -999
In [293]: A = [1,10,23,45,24,24,55,67,73,26,13,96,53,23,24,43,90]
...: B = [24,23,29, BW,49,59,72, BW,9,183,17, txt,49,BW,479,BW]
In [300]: df = pd.DataFrame({'A': A, 'B': B})
In [301]: df
Out[301]:
A B
0 1 24
1 10 23
2 23 29
3 45 999
4 24 49
5 24 59
6 55 72
7 67 999
8 73 9
9 26 183
10 13 17
11 96 -999
12 53 2
13 23 49
14 24 999
15 43 479
16 90 999
首先让我们拆分不同的值组,这里我将它们拆分为唯一的组,其中每个组包含值 BW
和下一个 [=16] 之间的 B
值=].
In [321]: df = df.assign(group = (df[~df['B'].between(BW,BW)].index.to_series().diff() > 1).cumsum())
In [322]: df
Out[322]:
A B group
0 1 24 0.00000000
1 10 23 0.00000000
2 23 29 0.00000000
3 45 999 NaN
4 24 49 1.00000000
5 24 59 1.00000000
6 55 72 1.00000000
7 67 999 NaN
8 73 9 2.00000000
9 26 183 2.00000000
10 13 17 2.00000000
11 96 -999 2.00000000
12 53 2 2.00000000
13 23 49 2.00000000
14 24 999 NaN
15 43 479 3.00000000
16 90 999 NaN
接下来使用 np.where()
我们可以根据您设置的条件替换值。
In [360]: df['C'] = np.where(df.group == df[df.B == txt].group.values[0], np.nan, df.B)
In [432]: df
Out[432]:
A B group C
0 1 24 0.00000000 24.00000000
1 10 23 0.00000000 23.00000000
2 23 29 0.00000000 29.00000000
3 45 999 NaN 999.00000000
4 24 49 1.00000000 49.00000000
5 24 59 1.00000000 59.00000000
6 55 72 1.00000000 72.00000000
7 67 999 NaN 999.00000000
8 73 9 2.00000000 NaN
9 26 183 2.00000000 NaN
10 13 17 2.00000000 NaN
11 96 -999 2.00000000 NaN
12 53 2 2.00000000 NaN
13 23 49 2.00000000 NaN
14 24 999 NaN 999.00000000
15 43 479 3.00000000 479.00000000
16 90 999 NaN 999.00000000
这里我们需要将 B
等于 BW
for C
设置回 B
的值。
In [488]: df['C'] = np.where(df['B'] == BW, df['B'], df['C'])
In [489]: df
Out[489]:
A B group C
0 1 24 0.00000000 24.00000000
1 10 23 0.00000000 23.00000000
2 23 29 0.00000000 29.00000000
3 45 999 NaN 999.00000000
4 24 49 1.00000000 49.00000000
5 24 59 1.00000000 59.00000000
6 55 72 1.00000000 72.00000000
7 67 999 NaN 999.00000000
8 73 9 2.00000000 NaN
9 26 183 2.00000000 NaN
10 13 17 2.00000000 NaN
11 96 -999 2.00000000 NaN
12 53 2 2.00000000 NaN
13 23 49 2.00000000 NaN
14 24 999 NaN 999.00000000
15 43 479 3.00000000 479.00000000
16 90 999 NaN 999.00000000
最后只需将 float 列转换为 int 并删除我们不再需要的 group
列。如果您想保持 NaN 值为 np.nan
,则忽略到 Int64
.
In [396]: df.C = df.C.astype('Int64')
In [397]: df
Out[397]:
A B group C
0 1 24 0.00000000 24
1 10 23 0.00000000 23
2 23 29 0.00000000 29
3 45 999 NaN 999
4 24 49 1.00000000 49
5 24 59 1.00000000 59
6 55 72 1.00000000 72
7 67 999 NaN 999
8 73 9 2.00000000 <NA>
9 26 183 2.00000000 <NA>
10 13 17 2.00000000 <NA>
11 96 -999 2.00000000 <NA>
12 53 2 2.00000000 <NA>
13 23 49 2.00000000 <NA>
14 24 999 NaN 999
15 43 479 3.00000000 479
16 90 999 NaN 999
In [398]: df = df.drop('group', axis=1)
In [435]: df
Out[435]:
A B C
0 1 24 24
1 10 23 23
2 23 29 29
3 45 999 999
4 24 49 49
5 24 59 59
6 55 72 72
7 67 999 999
8 73 9 <NA>
9 26 183 <NA>
10 13 17 <NA>
11 96 -999 <NA>
12 53 2 <NA>
13 23 49 <NA>
14 24 999 999
15 43 479 479
16 90 999 999