如何根据条件将数据框值附加到空列表

How to append dataframe values to empty lists based on conditions

我有以下数据框:

dictionary = {'Monday': {'John': 5,
                  'Lisa': 1,
                  'Karyn': 'NaN',
                  'steve': 1,
                  'ryan': 4,
                  'chris': 5,
                  'jessie': 6},
         'Friday': {'John': 0,
                  'Lisa': 1,
                  'Karyn':'NaN',
                  'steve': 4,
                  'ryan': 7,
                  'chris': 'NaN',
                   'jessie': 11},
        'Saturday': {'John': 0,
                  'Lisa': 1,
                  'Karyn': 2,
                  'steve': 4,
                   'ryan': 'NaN',
                   'chris': 'NaN',
                   'jessie': 1}}
                     
tab = pd.DataFrame(dictionary)
      Monday    Friday  Saturday
John    5          0    0
Lisa    1          1    1
Karyn   NaN       NaN   2
steve   1          4    4
ryan    4          7    NaN
chris   5        NaN    NaN
jessie  6         11    1

我有这些空列表

mon_only = []
fri_only = []
sat_only = []
mon_fri_only = []
mon_sat_only = []
fri_sat_only = []
mon_fri_sat = []

我想根据下降的位置将索引附加到这些列表中。例如,如果索引名称的值大于零,则认为它存在于该列中。如果它只出现在一个星期一的列中,那么它会转到 mon_only 列表。如果它出现在所有三列中,那么它将进入 mon_fri_sat 列表。

结果基本上应该是这样的

mon_only = ['John','chris']
fri_only = []
sat_only = ['Karyn']
mon_fri_only = ['ryan']
mon_sat_only = []
fri_sat_only = []
mon_fri_sat = ['Lisa','steve','jessie']

您可以使用 itertools.combinations 首先创建组合,然后使用条件和 df.dot 获取值不是 'NaN'0 的列名称。最后重新索引并用 []

填充 nan
from itertools import combinations
from collections import defaultdict

delim = ","
c = ~(tab.eq("NaN")|tab.eq(0))
d = c.dot(c.columns+delim).str.rstrip(delim)

ind = [delim.join(idx) for i in range(1,len(tab.columns)+1) 
       for idx in list(combinations(tab.columns,i))]
defd = defaultdict(list)
for k,v in d.items():
    if v not in defd[v]:
        defd[v].append(k)
    
out_d = pd.Series(defd).reindex(ind,fill_value=[]).to_dict()

输出:

print(out_d)

{'Monday': ['John', 'chris'],
 'Friday': [],
 'Saturday': ['Karyn'],
 'Monday,Friday': ['ryan'],
 'Monday,Saturday': [],
 'Friday,Saturday': [],
 'Monday,Friday,Saturday': ['Lisa', 'steve', 'jessie']}

将此字典保存在一个变量中,然后按键切片以获得所需的输出。


如果组合无关紧要,则代码相同但更小:

from collections import defaultdict
defd = defaultdict(list)
c = ~(tab.eq("NaN")|tab.eq(0))
d = c.dot(c.columns+',').str.rstrip(",")
for k,v in d.items():
    if v not in defd[v]:
        defd[v].append(k)
    

print(defd)
defaultdict(list,
            {'Monday': ['John', 'chris'],
             'Monday,Friday,Saturday': ['Lisa', 'steve', 'jessie'],
             'Saturday': ['Karyn'],
             'Monday,Friday': ['ryan']})

您可以尝试这样的操作:

dictionary = {'Monday': {'John': 5,
                  'Lisa': 1,
                  'Karyn': 'NaN',
                  'steve': 1,
                  'ryan': 4,
                  'chris': 5,
                  'jessie': 6},
         'Friday': {'John': 0,
                  'Lisa': 1,
                  'Karyn':'NaN',
                  'steve': 4,
                  'ryan': 7,
                  'chris': 'NaN',
                   'jessie': 11},
        'Saturday': {'John': 0,
                  'Lisa': 1,
                  'Karyn': 2,
                  'steve': 4,
                   'ryan': 'NaN',
                   'chris': 'NaN',
                   'jessie': 1}}
                     
tab = pd.DataFrame(dictionary)
tab.replace('NaN', np.nan, inplace=True)
tab['Name']=tab.index

days=['Monday', 'Friday', 'Saturday']

for d in days:
    tab[d+'_bool']=~tab[d].isin([0, np.nan])
    
tab.groupby([d+'_bool' for d in days])['Name'].apply(list)

输出:

Monday_bool  Friday_bool  Saturday_bool
False        False        True                           [Karyn]
True         False        False                    [John, chris]
             True         False                           [ryan]
                          True             [Lisa, steve, jessie]
Name: Name, dtype: object