如何使用一个函数两次?

How to use a function twice?

我必须使用相同的功能两次。第一个参数为df,第二个参数为df3。怎么做?函数:

def add(df, df3):
    df["timestamp"] = pd.to_datetime(df["timestamp"])
    df = df.groupby(pd.Grouper(key = "timestamp", freq = "h")).agg("mean")
    price = df["price"]
    amount = df["amount"]
    return (price * amount) // amount

双重用途:

out = []

# This loop will use the add(df) function for every csv and append in a list
for f in csv_files:
    df = pd.read_csv(f, header=0)
    # Replace empty values with numpy, not sure if usefull,  maybe pandas can handle this
    df.replace("", np.nan)  
    #added aggregate DataFrame with new column to list of DataFrames
    out.append(add(df))

out2 = []
df3 = pd.Series(dtype=np.float64)
for f in csv_files:
    df2 = pd.read_csv(f, header=0)
    df3 = pd.concat([df3, df2], ignore_index=True)

out2 = pd.DataFrame(add(df = df3))
out2

我收到错误:

TypeError: add() missing 1 required positional argument: 'df3'

add 函数的名称与脚本其余部分中的变量名称 dfdf3 无关。

正如@garagnoth 所说,您只需要 add 中的一个参数。您可以称它为 dffoomyvariablename:它与 dfdf3.

无关

对于您的情况,您可以将 add 函数更改为以下内容:

def add(a_dataframe):
    # I set the argument name to "a_dataframe" so you can
    # see its name is not linked to outside variables
    a_dataframe["timestamp"] = pd.to_datetime(a_dataframe["timestamp"])
    a_dataframe = a_dataframe.groupby(pd.Grouper(key = "timestamp", freq = "h")).agg("mean")
    price = a_dataframe["price"]
    amount = a_dataframe["amount"]
    return (price * amount) // amount

您现在可以像脚本的其余部分一样使用 dfdf3 调用此函数。